from __future__ import annotations import csv import datetime import json import os import time import uuid from abc import ABC, abstractmethod from collections import OrderedDict from pathlib import Path from typing import TYPE_CHECKING, Any import filelock import huggingface_hub from gradio_client import utils as client_utils from gradio_client.documentation import document import gradio as gr from gradio import utils if TYPE_CHECKING: from gradio.components import Component class FlaggingCallback(ABC): """ An abstract class for defining the methods that any FlaggingCallback should have. """ @abstractmethod def setup(self, components: list[Component], flagging_dir: str): """ This method should be overridden and ensure that everything is set up correctly for flag(). This method gets called once at the beginning of the Interface.launch() method. Parameters: components: Set of components that will provide flagged data. flagging_dir: A string, typically containing the path to the directory where the flagging file should be stored (provided as an argument to Interface.__init__()). """ pass @abstractmethod def flag( self, flag_data: list[Any], flag_option: str = "", username: str | None = None, ) -> int: """ This method should be overridden by the FlaggingCallback subclass and may contain optional additional arguments. This gets called every time the button is pressed. Parameters: interface: The Interface object that is being used to launch the flagging interface. flag_data: The data to be flagged. flag_option (optional): In the case that flagging_options are provided, the flag option that is being used. username (optional): The username of the user that is flagging the data, if logged in. Returns: (int) The total number of samples that have been flagged. """ pass @document() class SimpleCSVLogger(FlaggingCallback): """ A simplified implementation of the FlaggingCallback abstract class provided for illustrative purposes. Each flagged sample (both the input and output data) is logged to a CSV file on the machine running the gradio app. Example: import gradio as gr def image_classifier(inp): return {'cat': 0.3, 'dog': 0.7} demo = gr.Interface(fn=image_classifier, inputs="image", outputs="label", flagging_callback=SimpleCSVLogger()) """ def __init__(self): pass def setup(self, components: list[Component], flagging_dir: str | Path): self.components = components self.flagging_dir = flagging_dir os.makedirs(flagging_dir, exist_ok=True) def flag( self, flag_data: list[Any], flag_option: str = "", # noqa: ARG002 username: str | None = None, # noqa: ARG002 ) -> int: flagging_dir = self.flagging_dir log_filepath = Path(flagging_dir) / "log.csv" csv_data = [] for component, sample in zip(self.components, flag_data): save_dir = Path( flagging_dir ) / client_utils.strip_invalid_filename_characters(component.label or "") save_dir.mkdir(exist_ok=True) csv_data.append( component.flag( sample, save_dir, ) ) with open(log_filepath, "a", newline="") as csvfile: writer = csv.writer(csvfile) writer.writerow(utils.sanitize_list_for_csv(csv_data)) with open(log_filepath) as csvfile: line_count = len(list(csv.reader(csvfile))) - 1 return line_count @document() class CSVLogger(FlaggingCallback): """ The default implementation of the FlaggingCallback abstract class. Each flagged sample (both the input and output data) is logged to a CSV file with headers on the machine running the gradio app. Example: import gradio as gr def image_classifier(inp): return {'cat': 0.3, 'dog': 0.7} demo = gr.Interface(fn=image_classifier, inputs="image", outputs="label", flagging_callback=CSVLogger()) Guides: using-flagging """ def __init__(self, simplify_file_data: bool = True): self.simplify_file_data = simplify_file_data def setup( self, components: list[Component], flagging_dir: str | Path, ): self.components = components self.flagging_dir = flagging_dir os.makedirs(flagging_dir, exist_ok=True) def flag( self, flag_data: list[Any], flag_option: str = "", username: str | None = None, ) -> int: flagging_dir = self.flagging_dir log_filepath = Path(flagging_dir) / "log.csv" is_new = not Path(log_filepath).exists() headers = [ getattr(component, "label", None) or f"component {idx}" for idx, component in enumerate(self.components) ] + [ "flag", "username", "timestamp", ] csv_data = [] for idx, (component, sample) in enumerate(zip(self.components, flag_data)): save_dir = Path( flagging_dir ) / client_utils.strip_invalid_filename_characters( getattr(component, "label", None) or f"component {idx}" ) if utils.is_update(sample): csv_data.append(str(sample)) else: data = ( component.flag(sample, flag_dir=save_dir) if sample is not None else "" ) if self.simplify_file_data: data = utils.simplify_file_data_in_str(data) csv_data.append(data) csv_data.append(flag_option) csv_data.append(username if username is not None else "") csv_data.append(str(datetime.datetime.now())) with open(log_filepath, "a", newline="", encoding="utf-8") as csvfile: writer = csv.writer(csvfile) if is_new: writer.writerow(utils.sanitize_list_for_csv(headers)) writer.writerow(utils.sanitize_list_for_csv(csv_data)) with open(log_filepath, encoding="utf-8") as csvfile: line_count = len(list(csv.reader(csvfile))) - 1 return line_count @document() class HuggingFaceDatasetSaver(FlaggingCallback): """ A callback that saves each flagged sample (both the input and output data) to a HuggingFace dataset. Example: import gradio as gr hf_writer = gr.HuggingFaceDatasetSaver(HF_API_TOKEN, "image-classification-mistakes") def image_classifier(inp): return {'cat': 0.3, 'dog': 0.7} demo = gr.Interface(fn=image_classifier, inputs="image", outputs="label", allow_flagging="manual", flagging_callback=hf_writer) Guides: using-flagging """ def __init__( self, hf_token: str, dataset_name: str, private: bool = False, info_filename: str = "dataset_info.json", separate_dirs: bool = False, ): """ Parameters: hf_token: The HuggingFace token to use to create (and write the flagged sample to) the HuggingFace dataset (defaults to the registered one). dataset_name: The repo_id of the dataset to save the data to, e.g. "image-classifier-1" or "username/image-classifier-1". private: Whether the dataset should be private (defaults to False). info_filename: The name of the file to save the dataset info (defaults to "dataset_infos.json"). separate_dirs: If True, each flagged item will be saved in a separate directory. This makes the flagging more robust to concurrent editing, but may be less convenient to use. """ self.hf_token = hf_token self.dataset_id = dataset_name # TODO: rename parameter (but ensure backward compatibility somehow) self.dataset_private = private self.info_filename = info_filename self.separate_dirs = separate_dirs def setup(self, components: list[Component], flagging_dir: str): """ Params: flagging_dir (str): local directory where the dataset is cloned, updated, and pushed from. """ # Setup dataset on the Hub self.dataset_id = huggingface_hub.create_repo( repo_id=self.dataset_id, token=self.hf_token, private=self.dataset_private, repo_type="dataset", exist_ok=True, ).repo_id path_glob = "**/*.jsonl" if self.separate_dirs else "data.csv" huggingface_hub.metadata_update( repo_id=self.dataset_id, repo_type="dataset", metadata={ "configs": [ { "config_name": "default", "data_files": [{"split": "train", "path": path_glob}], } ] }, overwrite=True, token=self.hf_token, ) # Setup flagging dir self.components = components self.dataset_dir = ( Path(flagging_dir).absolute() / self.dataset_id.split("/")[-1] ) self.dataset_dir.mkdir(parents=True, exist_ok=True) self.infos_file = self.dataset_dir / self.info_filename # Download remote files to local remote_files = [self.info_filename] if not self.separate_dirs: # No separate dirs => means all data is in the same CSV file => download it to get its current content remote_files.append("data.csv") for filename in remote_files: try: huggingface_hub.hf_hub_download( repo_id=self.dataset_id, repo_type="dataset", filename=filename, local_dir=self.dataset_dir, token=self.hf_token, ) except huggingface_hub.utils.EntryNotFoundError: pass def flag( self, flag_data: list[Any], flag_option: str = "", username: str | None = None, ) -> int: if self.separate_dirs: # JSONL files to support dataset preview on the Hub unique_id = str(uuid.uuid4()) components_dir = self.dataset_dir / unique_id data_file = components_dir / "metadata.jsonl" path_in_repo = unique_id # upload in sub folder (safer for concurrency) else: # Unique CSV file components_dir = self.dataset_dir data_file = components_dir / "data.csv" path_in_repo = None # upload at root level return self._flag_in_dir( data_file=data_file, components_dir=components_dir, path_in_repo=path_in_repo, flag_data=flag_data, flag_option=flag_option, username=username or "", ) def _flag_in_dir( self, data_file: Path, components_dir: Path, path_in_repo: str | None, flag_data: list[Any], flag_option: str = "", username: str = "", ) -> int: # Deserialize components (write images/audio to files) features, row = self._deserialize_components( components_dir, flag_data, flag_option, username ) # Write generic info to dataset_infos.json + upload with filelock.FileLock(str(self.infos_file) + ".lock"): if not self.infos_file.exists(): self.infos_file.write_text( json.dumps({"flagged": {"features": features}}) ) huggingface_hub.upload_file( repo_id=self.dataset_id, repo_type="dataset", token=self.hf_token, path_in_repo=self.infos_file.name, path_or_fileobj=self.infos_file, ) headers = list(features.keys()) if not self.separate_dirs: with filelock.FileLock(components_dir / ".lock"): sample_nb = self._save_as_csv(data_file, headers=headers, row=row) sample_name = str(sample_nb) huggingface_hub.upload_folder( repo_id=self.dataset_id, repo_type="dataset", commit_message=f"Flagged sample #{sample_name}", path_in_repo=path_in_repo, ignore_patterns="*.lock", folder_path=components_dir, token=self.hf_token, ) else: sample_name = self._save_as_jsonl(data_file, headers=headers, row=row) sample_nb = len( [path for path in self.dataset_dir.iterdir() if path.is_dir()] ) huggingface_hub.upload_folder( repo_id=self.dataset_id, repo_type="dataset", commit_message=f"Flagged sample #{sample_name}", path_in_repo=path_in_repo, ignore_patterns="*.lock", folder_path=components_dir, token=self.hf_token, ) return sample_nb @staticmethod def _save_as_csv(data_file: Path, headers: list[str], row: list[Any]) -> int: """Save data as CSV and return the sample name (row number).""" is_new = not data_file.exists() with data_file.open("a", newline="", encoding="utf-8") as csvfile: writer = csv.writer(csvfile) # Write CSV headers if new file if is_new: writer.writerow(utils.sanitize_list_for_csv(headers)) # Write CSV row for flagged sample writer.writerow(utils.sanitize_list_for_csv(row)) with data_file.open(encoding="utf-8") as csvfile: return sum(1 for _ in csv.reader(csvfile)) - 1 @staticmethod def _save_as_jsonl(data_file: Path, headers: list[str], row: list[Any]) -> str: """Save data as JSONL and return the sample name (uuid).""" Path.mkdir(data_file.parent, parents=True, exist_ok=True) with open(data_file, "w") as f: json.dump(dict(zip(headers, row)), f) return data_file.parent.name def _deserialize_components( self, data_dir: Path, flag_data: list[Any], flag_option: str = "", username: str = "", ) -> tuple[dict[Any, Any], list[Any]]: """Deserialize components and return the corresponding row for the flagged sample. Images/audio are saved to disk as individual files. """ # Components that can have a preview on dataset repos file_preview_types = {gr.Audio: "Audio", gr.Image: "Image"} # Generate the row corresponding to the flagged sample features = OrderedDict() row = [] for component, sample in zip(self.components, flag_data): # Get deserialized object (will save sample to disk if applicable -file, audio, image,...-) label = component.label or "" save_dir = data_dir / client_utils.strip_invalid_filename_characters(label) save_dir.mkdir(exist_ok=True, parents=True) deserialized = utils.simplify_file_data_in_str( component.flag(sample, save_dir) ) # Add deserialized object to row features[label] = {"dtype": "string", "_type": "Value"} try: deserialized_path = Path(deserialized) if not deserialized_path.exists(): raise FileNotFoundError(f"File {deserialized} not found") row.append(str(deserialized_path.relative_to(self.dataset_dir))) except (FileNotFoundError, TypeError, ValueError): deserialized = "" if deserialized is None else str(deserialized) row.append(deserialized) # If component is eligible for a preview, add the URL of the file # Be mindful that images and audio can be None if isinstance(component, tuple(file_preview_types)): # type: ignore for _component, _type in file_preview_types.items(): if isinstance(component, _component): features[label + " file"] = {"_type": _type} break if deserialized: path_in_repo = str( # returned filepath is absolute, we want it relative to compute URL Path(deserialized).relative_to(self.dataset_dir) ).replace("\\", "/") row.append( huggingface_hub.hf_hub_url( repo_id=self.dataset_id, filename=path_in_repo, repo_type="dataset", ) ) else: row.append("") features["flag"] = {"dtype": "string", "_type": "Value"} features["username"] = {"dtype": "string", "_type": "Value"} row.append(flag_option) row.append(username) return features, row class FlagMethod: """ Helper class that contains the flagging options and calls the flagging method. Also provides visual feedback to the user when flag is clicked. """ def __init__( self, flagging_callback: FlaggingCallback, label: str, value: str, visual_feedback: bool = True, ): self.flagging_callback = flagging_callback self.label = label self.value = value self.__name__ = "Flag" self.visual_feedback = visual_feedback def __call__(self, request: gr.Request, *flag_data): try: self.flagging_callback.flag( list(flag_data), flag_option=self.value, username=request.username ) except Exception as e: print(f"Error while flagging: {e}") if self.visual_feedback: return "Error!" if not self.visual_feedback: return time.sleep(0.8) # to provide enough time for the user to observe button change return self.reset() def reset(self): return gr.Button(value=self.label, interactive=True)