# Code for Peekaboo # Author: Hasib Zunair # Modified from https://github.com/valeoai/FOUND, see license below. # Copyright 2022 - Valeo Comfort and Driving Assistance - Oriane Siméoni @ valeo.ai # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Visualize model predictions""" import os import torch import argparse import torch.nn as nn import torch.nn.functional as F import matplotlib.pyplot as plt from PIL import Image from model import PeekabooModel from misc import load_config from torchvision import transforms as T NORMALIZE = T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) if __name__ == "__main__": parser = argparse.ArgumentParser( description="Evaluation of Peekaboo", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument( "--img-path", type=str, default="data/examples/VOC_000030.jpg", help="Image path.", ) parser.add_argument( "--model-weights", type=str, default="data/weights/peekaboo_decoder_weights_niter500.pt", ) parser.add_argument( "--config", type=str, default="configs/peekaboo_DUTS-TR.yaml", ) parser.add_argument( "--output-dir", type=str, default="outputs", ) args = parser.parse_args() # Saving dir if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) # Configuration config, _ = load_config(args.config) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load the model model = PeekabooModel( vit_model=config.model["pre_training"], vit_arch=config.model["arch"], vit_patch_size=config.model["patch_size"], enc_type_feats=config.peekaboo["feats"], ) # Load weights model.decoder_load_weights(args.model_weights) model.eval() print(f"Model {args.model_weights} loaded correctly.") # Load the image with open(args.img_path, "rb") as f: img = Image.open(f) img = img.convert("RGB") t = T.Compose([T.ToTensor(), NORMALIZE]) img_t = t(img)[None, :, :, :] inputs = img_t.to(device) # Forward step with torch.no_grad(): preds = model(inputs, for_eval=True) sigmoid = nn.Sigmoid() h, w = img_t.shape[-2:] preds_up = F.interpolate( preds, scale_factor=model.vit_patch_size, mode="bilinear", align_corners=False )[..., :h, :w] preds_up = (sigmoid(preds_up.detach()) > 0.5).squeeze(0).float() plt.figure() plt.imshow(img) plt.imshow( preds_up.cpu().squeeze().numpy(), "gray", interpolation="none", alpha=0.5 ) plt.axis("off") img_name = args.img_path img_name = img_name.split("/")[-1].split(".")[0] plt.savefig( os.path.join(args.output_dir, f"{img_name}-peekaboo.png"), bbox_inches="tight", pad_inches=0, ) plt.close() print(f"Saved model prediction.")