# Code for Peekaboo # Author: Hasib Zunair # Modified from https://github.com/valeoai/FOUND, see license below. # Copyright 2022 - Valeo Comfort and Driving Assistance - Oriane Siméoni @ valeo.ai # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Visualize outputs and save masks of both model predictions and ground truths. Usage: python ./utils/visualize_outputs.py --model-weights outputs/msl_a1.5_b1_g1_reg4-MSL-DUTS-TR-vit_small8/decoder_weights_niter500.pt --img-folder ./datasets_local/ECSSD/images/ --output-dir outputs/visualizations/msl_a1.5_b1_g1_reg4-MSL-DUTS-TR-vit_small8_ECSSD """ import os import torch import argparse import torch.nn as nn import torch.nn.functional as F import matplotlib.pyplot as plt import cv2 import numpy as np from PIL import Image from model import PeekabooModel from misc import load_config from torchvision import transforms as T NORMALIZE = T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) if __name__ == "__main__": parser = argparse.ArgumentParser( description="Evaluation of Peekaboo", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument( "--img-folder", type=str, default="data/examples/", help="Image folder path." ) parser.add_argument( "--model-weights", type=str, default="data/weights/decoder_weights.pt", ) parser.add_argument( "--config", type=str, default="configs/msl_DUTS-TR.yaml", ) parser.add_argument( "--output-dir", type=str, default="outputs", ) args = parser.parse_args() # Saving dir if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) # Configuration config, _ = load_config(args.config) # ------------------------------------ # Load the model model = PeekabooModel( vit_model=config.model["pre_training"], vit_arch=config.model["arch"], vit_patch_size=config.model["patch_size"], enc_type_feats=config.peekaboo["feats"], ) # Load weights model.decoder_load_weights(args.model_weights) model.eval() print(f"Model {args.model_weights} loaded correctly.") img_paths = sorted( [os.path.join(args.img_folder, path) for path in os.listdir(args.img_folder)] ) dir = "./datasets_local/DUT-OMRON/pixelwiseGT-new-PNG/" mask_paths = sorted([os.path.join(dir, path) for path in os.listdir(dir)]) for img_path, mask_path in zip(img_paths, mask_paths): # Load the image with open(img_path, "rb") as f: img = Image.open(f) img = img.convert("RGB") img_np = np.array(img) t = T.Compose([T.ToTensor(), NORMALIZE]) img_t = t(img)[None, :, :, :] inputs = img_t.to("cuda") # Load mask with open(mask_path, "rb") as f: mask = Image.open(f).convert("P") mask_np = np.array(mask) mask_np = (mask_np / np.max(mask_np) * 255).astype(np.uint8) mask_np_3d = np.stack([mask_np, mask_np, mask_np], axis=-1) # Forward step with torch.no_grad(): preds = model(inputs, for_eval=True) sigmoid = nn.Sigmoid() h, w = img_t.shape[-2:] preds_up = F.interpolate( preds, scale_factor=model.vit_patch_size, mode="bilinear", align_corners=False, )[..., :h, :w] preds_up = (sigmoid(preds_up.detach()) > 0.5).squeeze(0).float() preds_up_np = preds_up.cpu().squeeze().numpy() preds_up_np = (preds_up_np / np.max(preds_up_np) * 255).astype(np.uint8) preds_up_np_3d = np.stack([preds_up_np, preds_up_np, preds_up_np], axis=-1) combined_image = cv2.addWeighted(img_np, 0.5, mask_np_3d, 0.5, 0) combined_image = cv2.cvtColor(combined_image, cv2.COLOR_BGR2RGB) save_path = os.path.join(args.output_dir, img_path.split("/")[-1]) cv2.imwrite(save_path, combined_image) print(f"Saved image in {save_path} with shape {combined_image.shape}")