# Copyright (c) Facebook, Inc. and its affiliates. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import pickle import argparse import torch from torch import nn import torch.distributed as dist import torch.backends.cudnn as cudnn from torchvision import models as torchvision_models from torchvision import transforms as pth_transforms from PIL import Image, ImageFile import numpy as np import utils import vision_transformer as vits from eval_knn import extract_features class CopydaysDataset: def __init__(self, basedir): self.basedir = basedir self.block_names = ( ["original", "strong"] + ["jpegqual/%d" % i for i in [3, 5, 8, 10, 15, 20, 30, 50, 75]] + ["crops/%d" % i for i in [10, 15, 20, 30, 40, 50, 60, 70, 80]] ) self.nblocks = len(self.block_names) self.query_blocks = range(self.nblocks) self.q_block_sizes = np.ones(self.nblocks, dtype=int) * 157 self.q_block_sizes[1] = 229 # search only among originals self.database_blocks = [0] def get_block(self, i): dirname = self.basedir + "/" + self.block_names[i] fnames = [ dirname + "/" + fname for fname in sorted(os.listdir(dirname)) if fname.endswith(".jpg") ] return fnames def get_block_filenames(self, subdir_name): dirname = self.basedir + "/" + subdir_name return [ fname for fname in sorted(os.listdir(dirname)) if fname.endswith(".jpg") ] def eval_result(self, ids, distances): j0 = 0 for i in range(self.nblocks): j1 = j0 + self.q_block_sizes[i] block_name = self.block_names[i] I = ids[j0:j1] # block size sum_AP = 0 if block_name != "strong": # 1:1 mapping of files to names positives_per_query = [[i] for i in range(j1 - j0)] else: originals = self.get_block_filenames("original") strongs = self.get_block_filenames("strong") # check if prefixes match positives_per_query = [ [j for j, bname in enumerate(originals) if bname[:4] == qname[:4]] for qname in strongs ] for qno, Iline in enumerate(I): positives = positives_per_query[qno] ranks = [] for rank, bno in enumerate(Iline): if bno in positives: ranks.append(rank) sum_AP += score_ap_from_ranks_1(ranks, len(positives)) print("eval on %s mAP=%.3f" % (block_name, sum_AP / (j1 - j0))) j0 = j1 # from the Holidays evaluation package def score_ap_from_ranks_1(ranks, nres): """Compute the average precision of one search. ranks = ordered list of ranks of true positives nres = total number of positives in dataset """ # accumulate trapezoids in PR-plot ap = 0.0 # All have an x-size of: recall_step = 1.0 / nres for ntp, rank in enumerate(ranks): # y-size on left side of trapezoid: # ntp = nb of true positives so far # rank = nb of retrieved items so far if rank == 0: precision_0 = 1.0 else: precision_0 = ntp / float(rank) # y-size on right side of trapezoid: # ntp and rank are increased by one precision_1 = (ntp + 1) / float(rank + 1) ap += (precision_1 + precision_0) * recall_step / 2.0 return ap class ImgListDataset(torch.utils.data.Dataset): def __init__(self, img_list, transform=None): self.samples = img_list self.transform = transform def __getitem__(self, i): with open(self.samples[i], "rb") as f: img = Image.open(f) img = img.convert("RGB") if self.transform is not None: img = self.transform(img) return img, i def __len__(self): return len(self.samples) def is_image_file(s): ext = s.split(".")[-1] if ext in ["jpg", "jpeg", "png", "ppm", "bmp", "pgm", "tif", "tiff", "webp"]: return True return False @torch.no_grad() def extract_features(image_list, model, args): transform = pth_transforms.Compose( [ pth_transforms.Resize((args.imsize, args.imsize), interpolation=3), pth_transforms.ToTensor(), pth_transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), ] ) tempdataset = ImgListDataset(image_list, transform=transform) data_loader = torch.utils.data.DataLoader( tempdataset, batch_size=args.batch_size_per_gpu, num_workers=args.num_workers, drop_last=False, sampler=torch.utils.data.DistributedSampler(tempdataset, shuffle=False), ) features = None for samples, index in utils.MetricLogger(delimiter=" ").log_every(data_loader, 10): samples, index = samples.cuda(non_blocking=True), index.cuda(non_blocking=True) feats = model.get_intermediate_layers(samples, n=1)[0].clone() cls_output_token = feats[:, 0, :] # [CLS] token # GeM with exponent 4 for output patch tokens b, h, w, d = ( len(samples), int(samples.shape[-2] / model.patch_embed.patch_size), int(samples.shape[-1] / model.patch_embed.patch_size), feats.shape[-1], ) feats = feats[:, 1:, :].reshape(b, h, w, d) feats = feats.clamp(min=1e-6).permute(0, 3, 1, 2) feats = ( nn.functional.avg_pool2d(feats.pow(4), (h, w)).pow(1.0 / 4).reshape(b, -1) ) # concatenate [CLS] token and GeM pooled patch tokens feats = torch.cat((cls_output_token, feats), dim=1) # init storage feature matrix if dist.get_rank() == 0 and features is None: features = torch.zeros(len(data_loader.dataset), feats.shape[-1]) if args.use_cuda: features = features.cuda(non_blocking=True) # get indexes from all processes y_all = torch.empty( dist.get_world_size(), index.size(0), dtype=index.dtype, device=index.device ) y_l = list(y_all.unbind(0)) y_all_reduce = torch.distributed.all_gather(y_l, index, async_op=True) y_all_reduce.wait() index_all = torch.cat(y_l) # share features between processes feats_all = torch.empty( dist.get_world_size(), feats.size(0), feats.size(1), dtype=feats.dtype, device=feats.device, ) output_l = list(feats_all.unbind(0)) output_all_reduce = torch.distributed.all_gather(output_l, feats, async_op=True) output_all_reduce.wait() # update storage feature matrix if dist.get_rank() == 0: if args.use_cuda: features.index_copy_(0, index_all, torch.cat(output_l)) else: features.index_copy_(0, index_all.cpu(), torch.cat(output_l).cpu()) return features # features is still None for every rank which is not 0 (main) if __name__ == "__main__": parser = argparse.ArgumentParser("Copy detection on Copydays") parser.add_argument( "--data_path", default="/path/to/copydays/", type=str, help="See https://lear.inrialpes.fr/~jegou/data.php#copydays", ) parser.add_argument( "--whitening_path", default="/path/to/whitening_data/", type=str, help="""Path to directory with images used for computing the whitening operator. In our paper, we use 20k random images from YFCC100M.""", ) parser.add_argument( "--distractors_path", default="/path/to/distractors/", type=str, help="Path to directory with distractors images. In our paper, we use 10k random images from YFCC100M.", ) parser.add_argument( "--imsize", default=320, type=int, help="Image size (square image)" ) parser.add_argument( "--batch_size_per_gpu", default=16, type=int, help="Per-GPU batch-size" ) parser.add_argument( "--pretrained_weights", default="", type=str, help="Path to pretrained weights to evaluate.", ) parser.add_argument("--use_cuda", default=True, type=utils.bool_flag) parser.add_argument("--arch", default="vit_base", type=str, help="Architecture") parser.add_argument( "--patch_size", default=8, type=int, help="Patch resolution of the model." ) parser.add_argument( "--checkpoint_key", default="teacher", type=str, help='Key to use in the checkpoint (example: "teacher")', ) parser.add_argument( "--num_workers", default=10, type=int, help="Number of data loading workers per GPU.", ) parser.add_argument( "--dist_url", default="env://", type=str, help="""url used to set up distributed training; see https://pytorch.org/docs/stable/distributed.html""", ) parser.add_argument( "--local_rank", default=0, type=int, help="Please ignore and do not set this argument.", ) args = parser.parse_args() utils.init_distributed_mode(args) print("git:\n {}\n".format(utils.get_sha())) print( "\n".join("%s: %s" % (k, str(v)) for k, v in sorted(dict(vars(args)).items())) ) cudnn.benchmark = True # ============ building network ... ============ if "vit" in args.arch: model = vits.__dict__[args.arch](patch_size=args.patch_size, num_classes=0) print(f"Model {args.arch} {args.patch_size}x{args.patch_size} built.") else: print(f"Architecture {args.arch} non supported") sys.exit(1) if args.use_cuda: model.cuda() model.eval() utils.load_pretrained_weights( model, args.pretrained_weights, args.checkpoint_key, args.arch, args.patch_size ) dataset = CopydaysDataset(args.data_path) # ============ Extract features ... ============ # extract features for queries queries = [] for q in dataset.query_blocks: queries.append(extract_features(dataset.get_block(q), model, args)) if utils.get_rank() == 0: queries = torch.cat(queries) print(f"Extraction of queries features done. Shape: {queries.shape}") # extract features for database database = [] for b in dataset.database_blocks: database.append(extract_features(dataset.get_block(b), model, args)) # extract features for distractors if os.path.isdir(args.distractors_path): print("Using distractors...") list_distractors = [ os.path.join(args.distractors_path, s) for s in os.listdir(args.distractors_path) if is_image_file(s) ] database.append(extract_features(list_distractors, model, args)) if utils.get_rank() == 0: database = torch.cat(database) print( f"Extraction of database and distractors features done. Shape: {database.shape}" ) # ============ Whitening ... ============ if os.path.isdir(args.whitening_path): print( f"Extracting features on images from {args.whitening_path} for learning the whitening operator." ) list_whit = [ os.path.join(args.whitening_path, s) for s in os.listdir(args.whitening_path) if is_image_file(s) ] features_for_whitening = extract_features(list_whit, model, args) if utils.get_rank() == 0: # center mean_feature = torch.mean(features_for_whitening, dim=0) database -= mean_feature queries -= mean_feature pca = utils.PCA(dim=database.shape[-1], whit=0.5) # compute covariance cov = ( torch.mm(features_for_whitening.T, features_for_whitening) / features_for_whitening.shape[0] ) pca.train_pca(cov.cpu().numpy()) database = pca.apply(database) queries = pca.apply(queries) # ============ Copy detection ... ============ if utils.get_rank() == 0: # l2 normalize the features database = nn.functional.normalize(database, dim=1, p=2) queries = nn.functional.normalize(queries, dim=1, p=2) # similarity similarity = torch.mm(queries, database.T) distances, indices = similarity.topk(20, largest=True, sorted=True) # evaluate retrieved = dataset.eval_result(indices, distances) dist.barrier()