import os import torch import argparse import torch.nn as nn import torch.nn.functional as F import matplotlib.pyplot as plt import gradio as gr import codecs import numpy as np import cv2 from PIL import Image from model import PeekabooModel from misc import load_config from torchvision import transforms as T NORMALIZE = T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) if __name__ == "__main__": def inference(img_path): # Load the image with open(img_path, "rb") as f: img = Image.open(f) img = img.convert("RGB") img_np = np.array(img) # Preprocess t = T.Compose([T.ToTensor(), NORMALIZE]) img_t = t(img)[None, :, :, :] inputs = img_t.to(device) # Forward step print(f"Start Peekaboo prediction.") with torch.no_grad(): preds = model(inputs, for_eval=True) print(f"Done Peekaboo prediction.") sigmoid = nn.Sigmoid() h, w = img_t.shape[-2:] preds_up = F.interpolate( preds, scale_factor=model.vit_patch_size, mode="bilinear", align_corners=False )[..., :h, :w] preds_up = (sigmoid(preds_up.detach()) > 0.5).squeeze(0).float() preds_up = preds_up.cpu().squeeze().numpy() # Overlay predicted mask with input image preds_up_np = (preds_up / np.max(preds_up) * 255).astype(np.uint8) preds_up_np_3d = np.stack([preds_up_np, preds_up_np, preds_up_np], axis=-1) combined_image = cv2.addWeighted(img_np, 0.5, preds_up_np_3d, 0.5, 0) print(f"Output shape is {combined_image.shape}") return combined_image parser = argparse.ArgumentParser( description="Evaluation of Peekaboo", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument( "--img-path", type=str, default="data/examples/VOC_000030.jpg", help="Image path.", ) parser.add_argument( "--model-weights", type=str, default="data/weights/peekaboo_decoder_weights_niter500.pt", ) parser.add_argument( "--config", type=str, default="configs/peekaboo_DUTS-TR.yaml", ) parser.add_argument( "--output-dir", type=str, default="outputs", ) args = parser.parse_args() # Configuration config, _ = load_config(args.config) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load the model model = PeekabooModel( vit_model=config.model["pre_training"], vit_arch=config.model["arch"], vit_patch_size=config.model["patch_size"], enc_type_feats=config.peekaboo["feats"], ) # Load weights model.decoder_load_weights(args.model_weights) model.eval() print(f"Model {args.model_weights} loaded correctly.") # App title = "PEEKABOO: Hiding Parts of an Image for Unsupervised Object Localization" description = codecs.open("./media/description.html", "r", "utf-8").read() article = "

PEEKABOO: Hiding Parts of an Image for Unsupervised Object Localization | Github

" gr.Interface( inference, gr.inputs.Image(type="filepath", label="Input Image"), gr.outputs.Image(type="numpy", label="Predicted Output"), examples=[ "./data/examples/a.jpeg", "./data/examples/b.jpeg", "./data/examples/c.jpeg", "./data/examples/d.jpeg", "./data/examples/e.jpeg" ], title=title, description=description, article=article, allow_flagging=False, analytics_enabled=False, ).launch(debug=True, enable_queue=True)