import torch from PIL import Image from torchvision import transforms import gradio as gr import os """ Built following: https://huggingface.co/spaces/pytorch/ResNet/tree/main https://www.gradio.app/image_classification_in_pytorch/ """ os.system("wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt") model = torch.hub.load('pytorch/vision:v0.10.0', 'resnet18', pretrained=True) model.eval() # Download an example image from the pytorch website torch.hub.download_url_to_file("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") def inference(input_image): preprocess = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) input_tensor = preprocess(input_image) input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model # move the input and model to GPU for speed if available if torch.cuda.is_available(): input_batch = input_batch.to('cuda') model.to('cuda') with torch.no_grad(): output = model(input_batch) # The output has unnormalized scores. To get probabilities, you can run a softmax on it. probabilities = torch.nn.functional.softmax(output[0], dim=0) # Read the categories with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Show top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) result = {} for i in range(top5_prob.size(0)): result[categories[top5_catid[i]]] = top5_prob[i].item() return result inputs = gr.inputs.Image(type='pil') outputs = gr.outputs.Label(type="confidences",num_top_classes=5) title = "An Image Classification Demo with ResNet" description = "Demo of a ResNet image classifier trained on the ImageNet dataset. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." article = "

Deep Residual Learning for Image Recognition | Github Repo

" gr.Interface(inference, inputs, outputs, examples=["example1.jpg", "example2.jpg"], title=title, description=description, article=article, analytics_enabled=False).launch() # import torch # import requests # import gradio as gr # from torchvision import transforms # """ # Built following https://www.gradio.app/image_classification_in_pytorch/. # """ # # Load model # model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True).eval() # # Download human-readable labels for ImageNet. # response = requests.get("https://git.io/JJkYN") # labels = response.text.split("\n") # def predict(inp): # inp = transforms.ToTensor()(inp).unsqueeze(0) # with torch.no_grad(): # prediction = torch.nn.functional.softmax(model(inp)[0], dim=0) # confidences = {labels[i]: float(prediction[i]) for i in range(1000)} # return confidences # title = "Image Classifier" # article = "

Deep Residual Learning for Image Recognition | Github Repo

" # gr.Interface(fn=predict, # inputs=gr.inputs.Image(type="pil"), # outputs=gr.outputs.Label(num_top_classes=3), # examples=["example1.jpg", "example2.jpg"], # theme="default", # css=".footer{display:none !important}").launch()