Spaces:
Runtime error
Runtime error
import torch | |
from PIL import Image | |
from torchvision import transforms | |
import gradio as gr | |
import os | |
""" | |
Built following: | |
https://huggingface.co/spaces/pytorch/ResNet/tree/main | |
https://www.gradio.app/image_classification_in_pytorch/ | |
""" | |
os.system("wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt") | |
model = torch.hub.load('pytorch/vision:v0.10.0', 'resnet18', pretrained=True) | |
model.eval() | |
# Download an example image from the pytorch website | |
torch.hub.download_url_to_file("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") | |
def inference(input_image): | |
preprocess = transforms.Compose([ | |
transforms.Resize(256), | |
transforms.CenterCrop(224), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
]) | |
input_tensor = preprocess(input_image) | |
input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model | |
# move the input and model to GPU for speed if available | |
if torch.cuda.is_available(): | |
input_batch = input_batch.to('cuda') | |
model.to('cuda') | |
with torch.no_grad(): | |
output = model(input_batch) | |
# The output has unnormalized scores. To get probabilities, you can run a softmax on it. | |
probabilities = torch.nn.functional.softmax(output[0], dim=0) | |
# Read the categories | |
with open("imagenet_classes.txt", "r") as f: | |
categories = [s.strip() for s in f.readlines()] | |
# Show top categories per image | |
top5_prob, top5_catid = torch.topk(probabilities, 5) | |
result = {} | |
for i in range(top5_prob.size(0)): | |
result[categories[top5_catid[i]]] = top5_prob[i].item() | |
return result | |
inputs = gr.inputs.Image(type='pil') | |
outputs = gr.outputs.Label(type="confidences",num_top_classes=5) | |
title = "An Image Classification Demo with ResNet" | |
description = "Demo of a ResNet image classifier trained on the ImageNet dataset. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." | |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1512.03385' target='_blank'>Deep Residual Learning for Image Recognition</a> | <a href='https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py' target='_blank'>Github Repo</a></p>" | |
gr.Interface(inference, | |
inputs, | |
outputs, | |
examples=["example1.jpg", "example2.jpg"], | |
title=title, | |
description=description, | |
article=article, | |
analytics_enabled=False).launch() | |
# import torch | |
# import requests | |
# import gradio as gr | |
# from torchvision import transforms | |
# """ | |
# Built following https://www.gradio.app/image_classification_in_pytorch/. | |
# """ | |
# # Load model | |
# model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True).eval() | |
# # Download human-readable labels for ImageNet. | |
# response = requests.get("https://git.io/JJkYN") | |
# labels = response.text.split("\n") | |
# def predict(inp): | |
# inp = transforms.ToTensor()(inp).unsqueeze(0) | |
# with torch.no_grad(): | |
# prediction = torch.nn.functional.softmax(model(inp)[0], dim=0) | |
# confidences = {labels[i]: float(prediction[i]) for i in range(1000)} | |
# return confidences | |
# title = "Image Classifier" | |
# article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1512.03385' target='_blank'>Deep Residual Learning for Image Recognition</a> | <a href='https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py' target='_blank'>Github Repo</a></p>" | |
# gr.Interface(fn=predict, | |
# inputs=gr.inputs.Image(type="pil"), | |
# outputs=gr.outputs.Label(num_top_classes=3), | |
# examples=["example1.jpg", "example2.jpg"], | |
# theme="default", | |
# css=".footer{display:none !important}").launch() | |