hasibzunair's picture
update app.py
3b639bc
raw
history blame
3.89 kB
import torch
from PIL import Image
from torchvision import transforms
import gradio as gr
import os
"""
Built following:
https://huggingface.co/spaces/pytorch/ResNet/tree/main
https://www.gradio.app/image_classification_in_pytorch/
"""
os.system("wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt")
model = torch.hub.load('pytorch/vision:v0.10.0', 'resnet18', pretrained=True)
model.eval()
# Download an example image from the pytorch website
torch.hub.download_url_to_file("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
def inference(input_image):
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
input_tensor = preprocess(input_image)
input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model
# move the input and model to GPU for speed if available
if torch.cuda.is_available():
input_batch = input_batch.to('cuda')
model.to('cuda')
with torch.no_grad():
output = model(input_batch)
# The output has unnormalized scores. To get probabilities, you can run a softmax on it.
probabilities = torch.nn.functional.softmax(output[0], dim=0)
# Read the categories
with open("imagenet_classes.txt", "r") as f:
categories = [s.strip() for s in f.readlines()]
# Show top categories per image
top5_prob, top5_catid = torch.topk(probabilities, 5)
result = {}
for i in range(top5_prob.size(0)):
result[categories[top5_catid[i]]] = top5_prob[i].item()
return result
inputs = gr.inputs.Image(type='pil')
outputs = gr.outputs.Label(type="confidences",num_top_classes=5)
title = "An Image Classification Demo with ResNet"
description = "Demo of a ResNet image classifier trained on the ImageNet dataset. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1512.03385' target='_blank'>Deep Residual Learning for Image Recognition</a> | <a href='https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py' target='_blank'>Github Repo</a></p>"
gr.Interface(inference,
inputs,
outputs,
examples=["example1.jpg", "example2.jpg"],
title=title,
description=description,
article=article,
analytics_enabled=False).launch()
# import torch
# import requests
# import gradio as gr
# from torchvision import transforms
# """
# Built following https://www.gradio.app/image_classification_in_pytorch/.
# """
# # Load model
# model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True).eval()
# # Download human-readable labels for ImageNet.
# response = requests.get("https://git.io/JJkYN")
# labels = response.text.split("\n")
# def predict(inp):
# inp = transforms.ToTensor()(inp).unsqueeze(0)
# with torch.no_grad():
# prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
# confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
# return confidences
# title = "Image Classifier"
# article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1512.03385' target='_blank'>Deep Residual Learning for Image Recognition</a> | <a href='https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py' target='_blank'>Github Repo</a></p>"
# gr.Interface(fn=predict,
# inputs=gr.inputs.Image(type="pil"),
# outputs=gr.outputs.Label(num_top_classes=3),
# examples=["example1.jpg", "example2.jpg"],
# theme="default",
# css=".footer{display:none !important}").launch()