#include #include #include "utils/checks.h" #include "inplace_abn.h" at::Tensor reduce_sum(at::Tensor x) { if (x.ndimension() == 2) { return x.sum(0); } else { auto x_view = x.view({x.size(0), x.size(1), -1}); return x_view.sum(-1).sum(0); } } at::Tensor broadcast_to(at::Tensor v, at::Tensor x) { if (x.ndimension() == 2) { return v; } else { std::vector broadcast_size = {1, -1}; for (int64_t i = 2; i < x.ndimension(); ++i) broadcast_size.push_back(1); return v.view(broadcast_size); } } int64_t count(at::Tensor x) { int64_t count = x.size(0); for (int64_t i = 2; i < x.ndimension(); ++i) count *= x.size(i); return count; } at::Tensor invert_affine(at::Tensor z, at::Tensor weight, at::Tensor bias, bool affine, float eps) { if (affine) { return (z - broadcast_to(bias, z)) / broadcast_to(at::abs(weight) + eps, z); } else { return z; } } std::vector mean_var_cpu(at::Tensor x) { auto num = count(x); auto mean = reduce_sum(x) / num; auto diff = x - broadcast_to(mean, x); auto var = reduce_sum(diff.pow(2)) / num; return {mean, var}; } at::Tensor forward_cpu(at::Tensor x, at::Tensor mean, at::Tensor var, at::Tensor weight, at::Tensor bias, bool affine, float eps) { auto gamma = affine ? at::abs(weight) + eps : at::ones_like(var); auto mul = at::rsqrt(var + eps) * gamma; x.sub_(broadcast_to(mean, x)); x.mul_(broadcast_to(mul, x)); if (affine) x.add_(broadcast_to(bias, x)); return x; } std::vector edz_eydz_cpu(at::Tensor z, at::Tensor dz, at::Tensor weight, at::Tensor bias, bool affine, float eps) { auto edz = reduce_sum(dz); auto y = invert_affine(z, weight, bias, affine, eps); auto eydz = reduce_sum(y * dz); return {edz, eydz}; } at::Tensor backward_cpu(at::Tensor z, at::Tensor dz, at::Tensor var, at::Tensor weight, at::Tensor bias, at::Tensor edz, at::Tensor eydz, bool affine, float eps) { auto y = invert_affine(z, weight, bias, affine, eps); auto mul = affine ? at::rsqrt(var + eps) * (at::abs(weight) + eps) : at::rsqrt(var + eps); auto num = count(z); auto dx = (dz - broadcast_to(edz / num, dz) - y * broadcast_to(eydz / num, dz)) * broadcast_to(mul, dz); return dx; } void leaky_relu_backward_cpu(at::Tensor z, at::Tensor dz, float slope) { CHECK_CPU_INPUT(z); CHECK_CPU_INPUT(dz); AT_DISPATCH_FLOATING_TYPES(z.type(), "leaky_relu_backward_cpu", ([&] { int64_t count = z.numel(); auto *_z = z.data(); auto *_dz = dz.data(); for (int64_t i = 0; i < count; ++i) { if (_z[i] < 0) { _z[i] *= 1 / slope; _dz[i] *= slope; } } })); } void elu_backward_cpu(at::Tensor z, at::Tensor dz) { CHECK_CPU_INPUT(z); CHECK_CPU_INPUT(dz); AT_DISPATCH_FLOATING_TYPES(z.type(), "elu_backward_cpu", ([&] { int64_t count = z.numel(); auto *_z = z.data(); auto *_dz = dz.data(); for (int64_t i = 0; i < count; ++i) { if (_z[i] < 0) { _z[i] = log1p(_z[i]); _dz[i] *= (_z[i] + 1.f); } } })); }