#!/usr/bin/env python3 import torch import subprocess import sys import os print("=== PyTorch CUDA Version Information ===") print(f"PyTorch version: {torch.__version__}") if torch.cuda.is_available(): print(f"CUDA available: Yes") print(f"CUDA version used by PyTorch: {torch.version.cuda}") print(f"cuDNN version: {torch.backends.cudnn.version() if torch.backends.cudnn.is_available() else 'Not available'}") print(f"GPU device name: {torch.cuda.get_device_name(0)}") # Try to check system CUDA version try: nvcc_output = subprocess.check_output(["nvcc", "--version"]).decode("utf-8") print("\nSystem NVCC version:") print(nvcc_output) except: print("\nNVCC not found in PATH") # Check CUDA libraries try: print("\nChecking required CUDA libraries:") for lib in ["libcudart.so", "libcublas.so", "libcublasLt.so"]: print(f"\nSearching for {lib}:") find_result = subprocess.run(f"find /usr -name '{lib}*'", shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) if find_result.returncode == 0 and find_result.stdout: print(find_result.stdout.decode("utf-8")) else: print(f"No {lib} found in /usr") except Exception as e: print(f"Error checking libraries: {e}") # Check LD_LIBRARY_PATH print("\nLD_LIBRARY_PATH:") print(os.environ.get("LD_LIBRARY_PATH", "Not set")) else: print("CUDA not available") # Check system CUDA installation print("\n=== System CUDA Information ===") try: nvidia_smi = subprocess.check_output(["nvidia-smi"]).decode("utf-8") print("NVIDIA-SMI output:") print(nvidia_smi) except: print("nvidia-smi not found or not working")