from fastai.vision.all import * import gradio as gr learn = load_learner('snakes-v2-457423.pkl') categories = ['Banded Krait', 'Brahminy Blindsnake', 'Buff Striped Keelback', 'Burmese Python', 'Chinese Cobra', 'Chinese Green Snake', 'Chinese Green Tree Viper', 'Common Mock Viper', 'Copperhead Rat Snake', 'Golden Tree Snake', 'Indo-Chinese Rat Snake', 'King Cobra', 'Kramer’s Pit Viper', 'Malayan Pit Viper', 'Many-banded Krait', 'Oriental Ratsnake', 'Oriental Whipsnake', 'Painted Bronzeback', 'Reticulated Python', 'Small-banded Kukri Snake', 'White-lipped Pit Viper', 'Yellow-spotted Keelback'] def classify_snake(image): pred, idx, probs = learn.predict(image) return dict(zip(categories, map(float,probs))) image = gr.inputs.Image(shape=(192, 192)) label = gr.outputs.Label() examples = ['golden-tree-snake.jpg', 'painted-bronzeback.jpg', 'reticulated-python.jpg', 'chinese-green-tree-viper.jpg'] intf = gr.Interface(fn=classify_snake, inputs=image, outputs=label, examples=examples) intf.launch()