import numpy as np import pandas as pd from sklearn.ensemble import RandomForestClassifier import gradio as gr df = pd.read_csv("credit_risk_dataset.csv") df = df.dropna() df.columns X =df.drop(["loan_status", "loan_percent_income"], axis = 1) y = df['loan_status'] categorical_features = ["person_home_ownership", "loan_intent", "loan_grade", "cb_person_default_on_file"] X = pd.get_dummies(X, categorical_features) X.columns from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2) from sklearn.preprocessing import StandardScaler scaler_normal = StandardScaler() def scaler(data, runtime = False): normal_col = ['person_income','person_age','person_emp_length', 'loan_amnt','loan_int_rate','cb_person_cred_hist_length'] if(runtime == False): data.loc[:,normal_col] = scaler_normal.fit_transform(data.loc[:,normal_col]) else: data.loc[:,normal_col] = scaler_normal.transform(data.loc[:,normal_col]) return data X_train = scaler(X_train) X_test = scaler(X_test, True) rf_model = RandomForestClassifier(max_depth = 5) rf_model.fit(X_train, y_train) y_predict = rf_model.predict(X_test) y_predict features = { "person_home_ownership": ['MORTGAGE', 'OTHER','OWN', 'RENT',], "loan_intent": ['DEBTCONSOLIDATION', 'EDUCATION', 'HOMEIMPROVEMENT', 'MEDICAL', 'PERSONAL', 'VENTURE'], "loan_grade": ['A','B', 'C', 'D', 'E','F', 'G'], "cb_person_default_on_file": ['N', 'Y'] } def preprocess(model_input): for feature in features: for option in features[feature]: selection = model_input[feature] if option is selection: model_input[f'{feature}_{option}'] = 1 else: model_input[f'{feature}_{option}'] = 0 model_input.drop([_ for _ in features], inplace = True, axis = 1) return model_input def credit_run(person_age, person_emp_length,person_home_ownership,cb_person_default_on_file,loan_intent,loan_grade,person_income, loan_amnt, loan_int_rate, cb_person_cred_hist_length): model_input = preprocess( pd.DataFrame( { 'person_age': person_age, 'person_income': person_income, 'person_home_ownership': person_home_ownership, 'person_emp_length': person_emp_length, 'loan_intent': loan_intent, 'loan_grade': loan_grade, 'loan_amnt': loan_amnt, 'loan_int_rate': loan_int_rate, 'cb_person_default_on_file': cb_person_default_on_file, 'cb_person_cred_hist_length': cb_person_cred_hist_length }, index = [0] )) out = rf_model.predict(model_input) return "High risk of defaulting" if out[0] == 1 else "Low risk of defaulting" import gradio as gr with gr.Blocks(theme=gr.themes.Soft()) as demo: with gr.Row(): with gr.Column(scale=1,min_width=400): gr.Image("Non_Payment_Logo.png").style(height='5') with gr.Column(scale=1,min_width=600): person_age=gr.Slider(label="Customer Age(In Years)", minimum=18, maximum=90, step=1) Person_Emp_Length=gr.Slider(label="Customer Employement Length(In Years)", minimum=0, maximum=60, step=1) with gr.Column(scale=2,min_width=600): with gr.Row(): with gr.Column(scale=1,min_width=500): Home_Ownership_Status=gr.Radio(['MORTGAGE', 'OTHER','OWN', 'RENT'],label="Home Ownership Status") with gr.Column(scale=2,min_width=100): Person_Defaulted_in_History=gr.Radio(['N', 'Y'],label="Missed Payment in History") with gr.Row(): with gr.Column(scale=3,min_width=300): Credit_Intent=gr.Dropdown(['DEBTCONSOLIDATION', 'EDUCATION', 'HOMEIMPROVEMENT', 'MEDICAL', 'PERSONAL', 'VENTURE'],label="Intent") with gr.Column(scale=4,min_width=300): Type_Of_Credit=gr.Dropdown(['A','B', 'C', 'D', 'E','F', 'G'],label="Type Of Credit") with gr.Row(): with gr.Column(scale=3,min_width=300): Person_Income=gr.Number(label="Customer Income(per month)") with gr.Column(scale=4,min_width=300): Credit_Amount=gr.Number(label="Premium Amount") with gr.Row(): with gr.Column(scale=3,min_width=300): Interest_Rate=gr.Number(label="Interest Rate") with gr.Column(scale=4,min_width=300): Person_Credit_History_Length=gr.Number(label="Customer's Credit History Length") with gr.Row(): with gr.Column(): default= gr.Radio(['Low risk of defaulting', 'High risk of defaulting'],label="Chances Of Defaulting") btn = gr.Button("PREDICT") btn.click(fn=credit_run, inputs=[person_age,Person_Emp_Length,Home_Ownership_Status,Person_Defaulted_in_History,Credit_Intent,Type_Of_Credit,Person_Income,Credit_Amount,Interest_Rate,Person_Credit_History_Length], outputs=[default]) gr.Examples( [["23","2","RENT","N","EDUCATION","A","12000","30000","8.9","6"], ["35","10","OWN","N","MEDICAL","C","20000","40000","8.3","8"], ["28","6","RENT","N","VENTURE","B","32000","30000","8.2","6"], ["32","10","MORTGAGE","Y","HOMEIMPROVEMENT","E","20000","600000","8.6","8"], ["41","18","OWN","Y","PERSONAL","A","10000","300000","14.3","4"], ["30","7","OTHER","Y","MEDICAL","C","13000","1000000","9.5","10"]], inputs=[person_age,Person_Emp_Length,Home_Ownership_Status,Person_Defaulted_in_History,Credit_Intent,Type_Of_Credit,Person_Income,Credit_Amount,Interest_Rate,Person_Credit_History_Length] ) demo.launch(debug=True)