import numpy as np import pandas as pd from sklearn.ensemble import RandomForestClassifier import gradio as gr df = pd.read_csv("credit_risk_dataset.csv") df = df.dropna() df.columns X =df.drop(["loan_status", "loan_percent_income"], axis = 1) y = df['loan_status'] categorical_features = ["person_home_ownership", "loan_intent", "loan_grade", "cb_person_default_on_file"] X = pd.get_dummies(X, categorical_features) X.columns from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2) from sklearn.preprocessing import StandardScaler scaler_normal = StandardScaler() def scaler(data, runtime = False): normal_col = ['person_income','person_age','person_emp_length', 'loan_amnt','loan_int_rate','cb_person_cred_hist_length'] if(runtime == False): data.loc[:,normal_col] = scaler_normal.fit_transform(data.loc[:,normal_col]) else: data.loc[:,normal_col] = scaler_normal.transform(data.loc[:,normal_col]) return data X_train = scaler(X_train) X_test = scaler(X_test, True) rf_model = RandomForestClassifier(max_depth = 5) rf_model.fit(X_train, y_train) y_predict = rf_model.predict(X_test) y_predict features = { "person_home_ownership": ['MORTGAGE', 'OTHER','OWN', 'RENT',], "loan_intent": ['DEBTCONSOLIDATION', 'EDUCATION', 'HOMEIMPROVEMENT', 'MEDICAL', 'PERSONAL', 'VENTURE'], "loan_grade": ['A','B', 'C', 'D', 'E','F', 'G'], "cb_person_default_on_file": ['N', 'Y'] } def preprocess(model_input): for feature in features: for option in features[feature]: selection = model_input[feature] if option is selection: model_input[f'{feature}_{option}'] = 1 else: model_input[f'{feature}_{option}'] = 0 model_input.drop([_ for _ in features], inplace = True, axis = 1) return model_input def credit_run(person_age, person_emp_length,person_home_ownership,cb_person_default_on_file,loan_intent,loan_grade,person_income, loan_amnt, loan_int_rate, cb_person_cred_hist_length): model_input = preprocess( pd.DataFrame( { 'person_age': person_age, 'person_income': person_income, 'person_home_ownership': person_home_ownership, 'person_emp_length': person_emp_length, 'loan_intent': loan_intent, 'loan_grade': loan_grade, 'loan_amnt': loan_amnt, 'loan_int_rate': loan_int_rate, 'cb_person_default_on_file': cb_person_default_on_file, 'cb_person_cred_hist_length': cb_person_cred_hist_length }, index = [0] )) out = rf_model.predict(model_input) return "High risk of defaulting" if out[0] == 1 else "Low risk of defaulting" import gradio as gr with gr.Blocks() as demo: with gr.Row(): with gr.Column(scale=1,min_width=600): gr.Image("non_payment_logo.jpg").style(height='7') person_age=gr.Slider(label="Person Age(In Years)", minimum=18, maximum=90, step=1) Pererson_Emp_Length=gr.Slider(label="Pererson Emp Length(In Years)", minimum=0, maximum=60, step=1) with gr.Column(scale=2,min_width=600): with gr.Row(): with gr.Column(scale=1,min_width=400): Home_Ownership_Status=gr.Radio(['MORTGAGE', 'OTHER','OWN', 'RENT'],label="Home Ownership Status") with gr.Column(scale=2,min_width=100): Person_Defaulted_in_History=gr.Radio(['0', '1'],label="Person Defaulted in History") with gr.Row(): with gr.Column(scale=3,min_width=300): Credit_Intent=gr.Dropdown(['DEBTCONSOLIDATION', 'EDUCATION', 'HOMEIMPROVEMENT', 'MEDICAL', 'PERSONAL', 'VENTURE'],label="Credit Intent") with gr.Column(scale=4,min_width=300): Type_Of_Credit=gr.Dropdown(['A','B', 'C', 'D', 'E','F', 'G'],label="Type Of Credit") with gr.Row(): with gr.Column(scale=3,min_width=300): Person_Income=gr.Number(label="Person Income(per month)") with gr.Column(scale=4,min_width=300): Loan_Amount=gr.Number(label="Loan Amount") with gr.Row(): with gr.Column(scale=3,min_width=300): Loan_Interest_Rate=gr.Number(label="Loan Interest Rate") with gr.Column(scale=4,min_width=300): Person_Credit_History_Length=gr.Number(label="Person's Credit History Length") with gr.Row(): with gr.Column(): default= gr.Radio(['Low risk of defaulting', 'High risk of defaulting']) btn = gr.Button("PREDICT") btn.click(fn=credit_run, inputs=[person_age,Person_Income,Home_Ownership_Status,Pererson_Emp_Length,Credit_Intent,Type_Of_Credit,Loan_Amount,Loan_Interest_Rate,Person_Defaulted_in_History,Person_Credit_History_Length], outputs=[default]) #gr.Examples(inputs=[person_age,Pererson_Emp_Length,Home_Ownership_Status,Person_Defaulted_in_History,Credit_Intent,Type_Of_Credit,Person_Income,Loan_Amount,Loan_Interest_Rate,Person_Credit_History_Length]) demo.launch(debug=True)