#Importing the library import keras_ocr import gradio as gr # keras-ocr will automatically download pretrained # weights for the detector and recognizer. pipeline = keras_ocr.pipeline.Pipeline() def classify_image(file_name): images = [keras_ocr.tools.read(file_name.name.replace("\\",'/'))] prediction_groups = pipeline.recognize(images) text = "" for i in prediction_groups[0]: text = text+ " " + i[0] return text image = gr.inputs.File( file_count="single",type="file", label="Image File to Process") # label = gr.outputs.Label(num_top_classes=3) gr.Interface( fn=classify_image, inputs=image, outputs="text", interpretation="default", title="API OCR", description="This API is used to extract text from an image." ).launch()