from . import * import sys import os # Determine the absolute path to the external folder current_directory = os.path.dirname(os.path.abspath(__file__)) external_directory = os.path.abspath(os.path.join(current_directory, '../data')) # Add the external folder to sys.path sys.path.append(external_directory) # Now you can import the external module from data_utils import load_datasets, create_train_valid_dataloaders from model import init_ldm_model, init_diff_pro_sdf class LdmTrainConfig(TrainConfig): def __init__(self, params, output_dir, mode, mask_background, multi_phrase_label, random_pitch_aug, debug_mode=False) -> None: super().__init__(params, None, output_dir) self.debug_mode = debug_mode #self.use_autoreg_cond = use_autoreg_cond #self.use_external_cond = use_external_cond self.mask_background = mask_background self.multi_phrase_label = multi_phrase_label self.random_pitch_aug = random_pitch_aug # create model self.ldm_model = init_ldm_model(mode, params, debug_mode) self.model = init_diff_pro_sdf(self.ldm_model, params, self.device) # Create dataloader load_first_n = 10 if self.debug_mode else None train_set, valid_set = load_datasets( mode, multi_phrase_label, random_pitch_aug, mask_background, load_first_n ) self.train_dl, self.val_dl = create_train_valid_dataloaders(params.batch_size, train_set, valid_set) # Create optimizer self.optimizer = torch.optim.Adam( self.model.parameters(), lr=params.learning_rate )