# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import sys import time import numpy as np import tensorflow as tf # import tensorflow.compat.v1 as tf # tf.compat.v1.disable_eager_execution() def load_graph(model_file): graph = tf.Graph() graph_def = tf.compat.v1.GraphDef() with open(model_file, "rb") as f: graph_def.ParseFromString(f.read()) with graph.as_default(): tf.import_graph_def(graph_def) return graph def read_tensor_from_image_file(file_name, input_height=299, input_width=299, input_mean=0, input_std=255): input_name = "file_reader" output_name = "normalized" file_reader = tf.read_file(file_name, input_name) if file_name.endswith(".png"): image_reader = tf.image.decode_png(file_reader, channels = 3, name='png_reader') elif file_name.endswith(".gif"): image_reader = tf.squeeze(tf.image.decode_gif(file_reader, name='gif_reader')) elif file_name.endswith(".bmp"): image_reader = tf.image.decode_bmp(file_reader, name='bmp_reader') else: image_reader = tf.image.decode_jpeg(file_reader, channels = 3, name='jpeg_reader') float_caster = tf.cast(image_reader, tf.float32) dims_expander = tf.expand_dims(float_caster, 0); resized = tf.image.resize_bilinear(dims_expander, [input_height, input_width]) normalized = tf.divide(tf.subtract(resized, [input_mean]), [input_std]) sess = tf.Session() result = sess.run(normalized) return result def load_labels(label_file): label = [] proto_as_ascii_lines = tf.gfile.GFile(label_file).readlines() for l in proto_as_ascii_lines: label.append(l.rstrip()) return label if __name__ == "__main__": file_name = "tf_files/flower_photos/daisy/3475870145_685a19116d.jpg" model_file = "tf_files/retrained_graph.pb" label_file = "tf_files/retrained_labels.txt" input_height = 224 input_width = 224 input_mean = 128 input_std = 128 input_layer = "input" output_layer = "final_result" parser = argparse.ArgumentParser() parser.add_argument("--image", help="image to be processed") parser.add_argument("--graph", help="graph/model to be executed") parser.add_argument("--labels", help="name of file containing labels") parser.add_argument("--input_height", type=int, help="input height") parser.add_argument("--input_width", type=int, help="input width") parser.add_argument("--input_mean", type=int, help="input mean") parser.add_argument("--input_std", type=int, help="input std") parser.add_argument("--input_layer", help="name of input layer") parser.add_argument("--output_layer", help="name of output layer") args = parser.parse_args() if args.graph: model_file = args.graph if args.image: file_name = args.image if args.labels: label_file = args.labels if args.input_height: input_height = args.input_height if args.input_width: input_width = args.input_width if args.input_mean: input_mean = args.input_mean if args.input_std: input_std = args.input_std if args.input_layer: input_layer = args.input_layer if args.output_layer: output_layer = args.output_layer graph = load_graph(model_file) t = read_tensor_from_image_file(file_name, input_height=input_height, input_width=input_width, input_mean=input_mean, input_std=input_std) input_name = "import/" + input_layer output_name = "import/" + output_layer input_operation = graph.get_operation_by_name(input_name); output_operation = graph.get_operation_by_name(output_name); with tf.Session(graph=graph) as sess: start = time.time() results = sess.run(output_operation.outputs[0], {input_operation.outputs[0]: t}) end=time.time() results = np.squeeze(results) top_k = results.argsort()[-5:][::-1] labels = load_labels(label_file) print('\nEvaluation time (1-image): {:.3f}s\n'.format(end-start)) template = "{} (score={:0.5f})" for i in top_k: print(template.format(labels[i], results[i]))