import pandas as pd from transformers import pipeline import PIL from PIL import Image from PIL import ImageDraw import gradio as gr import torch import easyocr import omegaconf import cv2 from vietocr.vietocr.tool.predictor import Predictor from vietocr.vietocr.tool.config import Cfg # Configure of VietOCR config = Cfg.load_config_from_name('vgg_transformer') # config = Cfg.load_config_from_file('vietocr/config.yml') # config['weights'] = '/Users/bmd1905/Desktop/pretrain_ocr/vi00_vi01_transformer.pth' config['cnn']['pretrained'] = True config['predictor']['beamsearch'] = True config['device'] = 'cpu' # mps recognitor = Predictor(config) classifier = pipeline("zero-shot-classification", model="NDugar/debertav3-mnli-snli-anli") def zero_shot(doc, candidates): given_labels = candidates.split(", ") dictionary = classifier(doc, given_labels) new_dict = dict (zip (dictionary['labels'], dictionary['scores'])) max_label = max (new_dict, key=new_dict.get) max_score = max(dictionary['scores']) return max_label, max_score def draw_boxes(image, bounds, color='yellow', width=2): draw = ImageDraw.Draw(image) for bound in bounds: p0, p1, p2, p3 = bound[0] draw.line([*p0, *p1, *p2, *p3, *p0], fill=color, width=width) return image def inference(filepath, lang, labels): img = cv2.imread(filepath) width, height, _ = img.shape reader = easyocr.Reader(lang) bounds = reader.readtext(filepath) new_bounds=[] for (bbox, text, prob) in bounds: (tl, tr, br, bl) = bbox tl = (int(tl[0]), int(tl[1])) tr = (int(tr[0]), int(tr[1])) br = (int(br[0]), int(br[1])) bl = (int(bl[0]), int(bl[1])) min_x = min(tl[0], tr[0], br[0], bl[0]) min_x = max(0, min_x) max_x = max(tl[0], tr[0], br[0], bl[0]) max_x = min(width-1, max_x) min_y = min(tl[1], tr[1], br[1], bl[1]) min_y = max(0, min_y) max_y = max(tl[1], tr[1], br[1], bl[1]) max_y = min(height-1, max_y) # crop the region of interest (ROI) cropped_image = img[min_y:max_y,min_x:max_x] # crop the image cropped_image = Image.fromarray(cropped_image) out = recognitor.predict(cropped_image) print(out) max_label, max_score = zero_shot(out, labels) print(max_label) print(max_score) new_bounds.append((bbox,text, out, prob)) im = PIL.Image.open(filepath) draw_boxes(im, bounds) im.save('result.jpg') return ['result.jpg', pd.DataFrame(new_bounds).iloc[: , 2:]] title = 'EasyOCR' description = 'Gradio demo for EasyOCR. EasyOCR demo supports 80+ languages.To use it, simply upload your image and choose a language from the dropdown menu, or click one of the examples to load them. Read more at the links below.' article = "

Ready-to-use OCR with 80+ supported languages and all popular writing scripts including Latin, Chinese, Arabic, Devanagari, Cyrillic and etc. | Github Repo

" examples = [['english.png',['en']],['thai.jpg',['th']],['french.jpg',['fr', 'en']],['chinese.jpg',['ch_sim', 'en']],['japanese.jpg',['ja', 'en']],['korean.png',['ko', 'en']],['Hindi.jpeg',['hi', 'en']]] css = ".output_image, .input_image {height: 40rem !important; width: 100% !important;}" choices = [ "vi" ] gr.Interface( inference, [gr.inputs.Image(type='filepath', label='Input'),gr.inputs.CheckboxGroup(choices, type="value", default=['vi'], label='language'), gr.inputs.Textbox(label='Labels')], [gr.outputs.Image(type='pil', label='Output'), gr.outputs.Dataframe(type='pandas', headers=['easyOCR','vietOCR', 'confidence'])], title=title, description=description, article=article, css=css, enable_queue=True ).launch(debug=True)