from einops import rearrange from torchvision import models import math import torch from torch import nn class LanguageTransformer(nn.Module): def __init__(self, vocab_size, d_model, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward, max_seq_length, pos_dropout, trans_dropout): super().__init__() self.d_model = d_model self.embed_tgt = nn.Embedding(vocab_size, d_model) self.pos_enc = PositionalEncoding(d_model, pos_dropout, max_seq_length) # self.learned_pos_enc = LearnedPositionalEncoding(d_model, pos_dropout, max_seq_length) self.transformer = nn.Transformer(d_model, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward, trans_dropout) self.fc = nn.Linear(d_model, vocab_size) def forward(self, src, tgt, src_key_padding_mask=None, tgt_key_padding_mask=None, memory_key_padding_mask=None): """ Shape: - src: (W, N, C) - tgt: (T, N) - src_key_padding_mask: (N, S) - tgt_key_padding_mask: (N, T) - memory_key_padding_mask: (N, S) - output: (N, T, E) """ tgt_mask = self.gen_nopeek_mask(tgt.shape[0]).to(src.device) src = self.pos_enc(src*math.sqrt(self.d_model)) # src = self.learned_pos_enc(src*math.sqrt(self.d_model)) tgt = self.pos_enc(self.embed_tgt(tgt) * math.sqrt(self.d_model)) output = self.transformer(src, tgt, tgt_mask=tgt_mask, src_key_padding_mask=src_key_padding_mask, tgt_key_padding_mask=tgt_key_padding_mask, memory_key_padding_mask=memory_key_padding_mask) # output = rearrange(output, 't n e -> n t e') output = output.transpose(0, 1) return self.fc(output) def gen_nopeek_mask(self, length): mask = (torch.triu(torch.ones(length, length)) == 1).transpose(0, 1) mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0)) return mask def forward_encoder(self, src): src = self.pos_enc(src*math.sqrt(self.d_model)) memory = self.transformer.encoder(src) return memory def forward_decoder(self, tgt, memory): tgt_mask = self.gen_nopeek_mask(tgt.shape[0]).to(tgt.device) tgt = self.pos_enc(self.embed_tgt(tgt) * math.sqrt(self.d_model)) output = self.transformer.decoder(tgt, memory, tgt_mask=tgt_mask) # output = rearrange(output, 't n e -> n t e') output = output.transpose(0, 1) return self.fc(output), memory def expand_memory(self, memory, beam_size): memory = memory.repeat(1, beam_size, 1) return memory def get_memory(self, memory, i): memory = memory[:, [i], :] return memory class PositionalEncoding(nn.Module): def __init__(self, d_model, dropout=0.1, max_len=100): super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0).transpose(0, 1) self.register_buffer('pe', pe) def forward(self, x): x = x + self.pe[:x.size(0), :] return self.dropout(x) class LearnedPositionalEncoding(nn.Module): def __init__(self, d_model, dropout=0.1, max_len=100): super(LearnedPositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) self.pos_embed = nn.Embedding(max_len, d_model) self.layernorm = LayerNorm(d_model) def forward(self, x): seq_len = x.size(0) pos = torch.arange(seq_len, dtype=torch.long, device=x.device) pos = pos.unsqueeze(-1).expand(x.size()[:2]) x = x + self.pos_embed(pos) return self.dropout(self.layernorm(x)) class LayerNorm(nn.Module): "A layernorm module in the TF style (epsilon inside the square root)." def __init__(self, d_model, variance_epsilon=1e-12): super().__init__() self.gamma = nn.Parameter(torch.ones(d_model)) self.beta = nn.Parameter(torch.zeros(d_model)) self.variance_epsilon = variance_epsilon def forward(self, x): u = x.mean(-1, keepdim=True) s = (x - u).pow(2).mean(-1, keepdim=True) x = (x - u) / torch.sqrt(s + self.variance_epsilon) return self.gamma * x + self.beta