import sys if sys.version_info[0] < 3 and sys.version_info[1] < 2: raise Exception("Must be using >= Python 3.2") from os import listdir, path if not path.isfile('face_detection/detection/sfd/s3fd.pth'): raise FileNotFoundError('Save the s3fd model to face_detection/detection/sfd/s3fd.pth \ before running this script!') import multiprocessing as mp from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import argparse, os, cv2, traceback, subprocess from tqdm import tqdm from glob import glob import audio from hparams import hparams as hp import face_detection parser = argparse.ArgumentParser() parser.add_argument('--ngpu', help='Number of GPUs across which to run in parallel', default=1, type=int) parser.add_argument('--batch_size', help='Single GPU Face detection batch size', default=32, type=int) parser.add_argument("--data_root", help="Root folder of the LRS2 dataset", required=True) parser.add_argument("--preprocessed_root", help="Root folder of the preprocessed dataset", required=True) args = parser.parse_args() fa = [face_detection.FaceAlignment(face_detection.LandmarksType._2D, flip_input=False, device='cuda:{}'.format(id)) for id in range(args.ngpu)] template = 'ffmpeg -loglevel panic -y -i {} -strict -2 {}' # template2 = 'ffmpeg -hide_banner -loglevel panic -threads 1 -y -i {} -async 1 -ac 1 -vn -acodec pcm_s16le -ar 16000 {}' def process_video_file(vfile, args, gpu_id): video_stream = cv2.VideoCapture(vfile) frames = [] while 1: still_reading, frame = video_stream.read() if not still_reading: video_stream.release() break frames.append(frame) vidname = os.path.basename(vfile).split('.')[0] dirname = vfile.split('/')[-2] fulldir = path.join(args.preprocessed_root, dirname, vidname) os.makedirs(fulldir, exist_ok=True) batches = [frames[i:i + args.batch_size] for i in range(0, len(frames), args.batch_size)] i = -1 for fb in batches: preds = fa[gpu_id].get_detections_for_batch(np.asarray(fb)) for j, f in enumerate(preds): i += 1 if f is None: continue x1, y1, x2, y2 = f cv2.imwrite(path.join(fulldir, '{}.jpg'.format(i)), fb[j][y1:y2, x1:x2]) def process_audio_file(vfile, args): vidname = os.path.basename(vfile).split('.')[0] dirname = vfile.split('/')[-2] fulldir = path.join(args.preprocessed_root, dirname, vidname) os.makedirs(fulldir, exist_ok=True) wavpath = path.join(fulldir, 'audio.wav') command = template.format(vfile, wavpath) subprocess.call(command, shell=True) def mp_handler(job): vfile, args, gpu_id = job try: process_video_file(vfile, args, gpu_id) except KeyboardInterrupt: exit(0) except: traceback.print_exc() def main(args): print('Started processing for {} with {} GPUs'.format(args.data_root, args.ngpu)) filelist = glob(path.join(args.data_root, '*/*.mp4')) jobs = [(vfile, args, i%args.ngpu) for i, vfile in enumerate(filelist)] p = ThreadPoolExecutor(args.ngpu) futures = [p.submit(mp_handler, j) for j in jobs] _ = [r.result() for r in tqdm(as_completed(futures), total=len(futures))] print('Dumping audios...') for vfile in tqdm(filelist): try: process_audio_file(vfile, args) except KeyboardInterrupt: exit(0) except: traceback.print_exc() continue if __name__ == '__main__': main(args)