import os import gradio as gr from imgutils.detect import detection_visualize from detect import _ALL_MODELS, _DEFAULT_MODEL, detect_text def _gr_detect_text(image, model: str, threshold: float): return detection_visualize(image, detect_text(image, model, threshold)) if __name__ == '__main__': with gr.Blocks() as demo: with gr.Row(): with gr.Column(): gr_face_input_image = gr.Image(type='pil', label='Original Image') gr_face_model = gr.Dropdown(_ALL_MODELS, value=_DEFAULT_MODEL, label='Model') with gr.Row(): gr_face_score_threshold = gr.Slider(0.0, 1.0, 0.05, label='Score Threshold') gr_face_submit = gr.Button(value='Submit', variant='primary') with gr.Column(): gr_face_output_image = gr.Image(type='pil', label="Labeled") gr_face_submit.click( _gr_detect_text, inputs=[ gr_face_input_image, gr_face_model, gr_face_score_threshold, ], outputs=[gr_face_output_image], ) demo.queue(os.cpu_count()).launch()