import gradio as gr from fastai.vision.all import * import skimage # load model learn = load_learner('model.pkl') # prediction function for model labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} # gradio app title = "Whale model" description = "Demo Gradio app for a ML image classifier using fast.ai" examples = ['whale.jpeg'] app = gr.Interface(fn=predict,inputs="image",outputs="label",title=title,description=description,examples=examples) app.launch()