import logging import os import multiprocessing import subprocess import time import fsspec import torch from tqdm import tqdm def remote_sync_s3(local_dir, remote_dir): # skip epoch_latest which can change during sync. result = subprocess.run(["aws", "s3", "sync", local_dir, remote_dir, '--exclude', '*epoch_latest.pt'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) if result.returncode != 0: logging.error(f"Error: Failed to sync with S3 bucket {result.stderr.decode('utf-8')}") return False logging.info(f"Successfully synced with S3 bucket") return True def remote_sync_fsspec(local_dir, remote_dir): # FIXME currently this is slow and not recommended. Look into speeding up. a = fsspec.get_mapper(local_dir) b = fsspec.get_mapper(remote_dir) for k in a: # skip epoch_latest which can change during sync. if 'epoch_latest.pt' in k: continue logging.info(f'Attempting to sync {k}') if k in b and len(a[k]) == len(b[k]): logging.debug(f'Skipping remote sync for {k}.') continue try: logging.info(f'Successful sync for {k}.') b[k] = a[k] except Exception as e: logging.info(f'Error during remote sync for {k}: {e}') return False return True def remote_sync(local_dir, remote_dir, protocol): logging.info('Starting remote sync.') if protocol == 's3': return remote_sync_s3(local_dir, remote_dir) elif protocol == 'fsspec': return remote_sync_fsspec(local_dir, remote_dir) else: logging.error('Remote protocol not known') return False def keep_running_remote_sync(sync_every, local_dir, remote_dir, protocol): while True: time.sleep(sync_every) remote_sync(local_dir, remote_dir, protocol) def start_sync_process(sync_every, local_dir, remote_dir, protocol): p = multiprocessing.Process(target=keep_running_remote_sync, args=(sync_every, local_dir, remote_dir, protocol)) return p # Note: we are not currently using this save function. def pt_save(pt_obj, file_path): of = fsspec.open(file_path, "wb") with of as f: torch.save(pt_obj, file_path) def pt_load(file_path, map_location=None): if not file_path.startswith('/'): logging.info('Loading remote checkpoint, which may take a bit.') of = fsspec.open(file_path, "rb") with of as f: out = torch.load(f, map_location=map_location) return out def check_exists(file_path): try: with fsspec.open(file_path): pass except FileNotFoundError: return False return True