import gradio as gr from huggingface_hub import InferenceClient #from unsloth import FastLanguageModel from peft import AutoPeftModelForCausalLM from transformers import AutoTokenizer """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ #client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") #client = InferenceClient("halme/id2223_lora_model") def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p,): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) #response = "" """ for message in client.chat_completion(messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p): token = message.choices[0].delta.content response += token yield response """ """ model, tokenizer = FastLanguageModel.from_pretrained( model_name = "halme/id2223_lora_model", # YOUR MODEL YOU USED FOR TRAINING max_seq_length = max_tokens, dtype = None, load_in_4bit = True, ) """ model = AutoPeftModelForCausalLM.from_pretrained( "halme/id2223_lora_model", # YOUR MODEL YOU USED FOR TRAINING ) tokenizer = AutoTokenizer.from_pretrained("halme/id2223_lora_model") #FastLanguageModel.for_inference(model) # Enable native 2x faster inference """messages = [ {"role": "user", "content": "Continue the fibonnaci sequence: 1, 1, 2, 3, 5, 8,"}, ] """ inputs = tokenizer.apply_chat_template( messages, tokenize = True, add_generation_prompt = True, # Must add for generation return_tensors = "pt", ) from transformers import TextStreamer text_streamer = TextStreamer(tokenizer, skip_prompt = True) yield model.generate(input_ids = inputs, streamer = text_streamer, max_new_tokens = 128, use_cache = True, temperature = 1.5, min_p = 0.1) """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()