import os from typing import Union, List from lm_eval.api.task import ConfigurableTask from lm_eval.api.instance import Instance # from lm_eval.api.registry import register_task from lm_eval.api.metrics import mean from src.backend.envs import DEVICE import spacy from selfcheckgpt.modeling_selfcheck import SelfCheckMQAG, SelfCheckNLI, SelfCheckBERTScore, SelfCheckNgram # @register_task("selfcheckgpt") class SelfCheckGPT(ConfigurableTask): VERSION = 0.0 DATASET_PATH = "potsawee/wiki_bio_gpt3_hallucination" DATASET_NAME = None OUTPUT_TYPE = 'generate_until' def __init__(self): super().__init__(config={'metadata': {'version': self.VERSION}}) # these end tokens are hard coded because of the current limitaion of the llm-eval. self.generation_kwargs = {"until": ["\n\n", "", "<|im_end|>", "", "<|endoftext|>"], "max_length": 512} self.generation_kwargs_sampling_number = 5 # the number of sampling for self-consistence self.generation_kwargs_sampling = {"temperature": 0.99, "do_sample": True, "until": ["\n\n", "", "<|im_end|>", ""], "max_length": 512} self.selfcheckgpt_type = os.environ.get('SELFCHECKGPTTYPE', 'SelfCheckNLI') self.selfcheckgpt_device = os.environ.get('SELFCHECKGPTDEVICE', DEVICE) self.selfcheckgpt_nlp = spacy.load("en_core_web_sm") if self.selfcheckgpt_type == 'SelfCheckNgram': self.selfcheckgpt = SelfCheckNgram(n=1) elif self.selfcheckgpt_type == 'SelfCheckBERTScore': self.selfcheckgpt = SelfCheckBERTScore(rescale_with_baseline=True) elif self.selfcheckgpt_type == 'SelfCheckMQAG': self.selfcheckgpt = SelfCheckMQAG(device=self.selfcheckgpt_device) elif self.selfcheckgpt_type == 'SelfCheckNLI': self.selfcheckgpt = SelfCheckNLI(device=self.selfcheckgpt_device) self.SelfCheckNLI_error_cnt = 0 def has_training_docs(self): return False def has_validation_docs(self): return True def has_test_docs(self): return False def validation_docs(self): return self.dataset["evaluation"] def doc_to_text(self, doc): if not hasattr(self, 'selfcheckgpt_nlp'): self.selfcheckgpt_nlp = spacy.load("en_core_web_sm") sentences = [x.text.strip() for x in self.selfcheckgpt_nlp(doc['wiki_bio_text']).sents] if len(sentences) < 2: raise ValueError("This wikipedia passage is too short for self-consistency check: {sentences}") # disscussed with Potsawee doc_text = f"Please generate a Wikipedia passage that consists of at least two sentences, starting with the following sentence: {sentences[0]}\n" return doc_text def doc_to_target(self, doc): answer = doc['wiki_bio_text'] return answer def construct_requests(self, doc: dict, ctx: str, **kwargs) -> Union[List[Instance], Instance]: arguments = (ctx, self.generation_kwargs) request_list = [ Instance(request_type='generate_until', doc=doc, arguments=arguments, idx=0, **kwargs), ] sampling_arguments = (ctx, self.generation_kwargs_sampling) request_list.extend([ Instance(request_type='generate_until', doc=doc, arguments=sampling_arguments, idx=idx, **kwargs) for idx in range(1, self.generation_kwargs_sampling_number+1) ] ) return request_list def process_results(self, doc, results): response_temperature_0 = results[0] other_responses = results[1:] passage = self.doc_to_target(doc) sentences = self.selfcheckgpt_nlp(response_temperature_0) sentences = [sent.text.strip() for sent in sentences.sents] if self.selfcheckgpt_type == 'SelfCheckNgram': selfcheckgpt_scores = self.selfcheckgpt.predict(sentences=sentences, passage=response_temperature_0, sampled_passages=other_responses) return { 'avg-selfcheckgpt': selfcheckgpt_scores['doc_level']['avg_neg_logprob'], 'max-selfcheckgpt': selfcheckgpt_scores['doc_level']['avg_max_neg_logprob'] } elif self.selfcheckgpt_type == 'SelfCheckBERTScore': selfcheckgpt_scores = self.selfcheckgpt.predict(sentences=sentences, sampled_passages=other_responses) elif self.selfcheckgpt_type == 'SelfCheckMQAG': selfcheckgpt_scores = self.selfcheckgpt.predict( sentences=sentences, passage=response_temperature_0, sampled_passages=other_responses, num_questions_per_sent=5, # number of questions to be drawn scoring_method='bayes_with_alpha', # options = 'counting', 'bayes', 'bayes_with_alpha' beta1=0.8, beta2=0.8) # additional params depending on scoring_method elif self.selfcheckgpt_type == 'SelfCheckNLI': selfcheckgpt_scores = self.selfcheckgpt.predict(sentences=sentences, sampled_passages=other_responses) if len(selfcheckgpt_scores) < 2: # at least two sentences self.SelfCheckNLI_error_cnt += 1 result = { 'avg-selfcheckgpt': 0.0, 'max-selfcheckgpt': 0.0 } else: threshold = 0.7 # https://huggingface.co/blog/dhuynh95/automatic-hallucination-detection # passage is hallucianted if one sentence is hallucinated. It's very strict. selfcheckgpt_scores_max = 0.0 if max(selfcheckgpt_scores) > threshold else 1.0 # passage is hallucianted if average score of all sentences is hallucinated. selfcheckgpt_scores_avg = 0.0 if sum(selfcheckgpt_scores) / len(selfcheckgpt_scores) > threshold else 1.0 result = {'avg-selfcheckgpt': selfcheckgpt_scores_avg, 'max-selfcheckgpt': selfcheckgpt_scores_max} return result selfcheckgpt_scores_avg = sum(selfcheckgpt_scores) / len(selfcheckgpt_scores) if len(selfcheckgpt_scores) > 0 else 0 selfcheckgpt_scores_max = max(selfcheckgpt_scores) return {'avg-selfcheckgpt': selfcheckgpt_scores_avg, 'max-selfcheckgpt': selfcheckgpt_scores_max} def aggregation(self): """ :returns: {str: [float] -> float} A dictionary where keys are the names of submetrics and values are functions that aggregate a list of metrics """ return {k: mean for k in ["avg-selfcheckgpt", "max-selfcheckgpt"]} def higher_is_better(self): """ :returns: {str: bool} A dictionary where keys are the names of submetrics and values are whether a higher value of the submetric is better """ return {k: True for k in ["avg-selfcheckgpt", "max-selfcheckgpt"]}