from lm_eval.api.task import ConfigurableTask from lm_eval.api.instance import Instance # from lm_eval.api.registry import register_task from lm_eval.api.metrics import mean import torch import sacrebleu from rouge_score import rouge_scorer, scoring def bleu(refs, preds): """ Returns `t5` style BLEU scores. See the related implementation: https://github.com/google-research/text-to-text-transfer-transformer/blob/3d10afd51ba97ac29eb66ae701eca274488202f7/t5/evaluation/metrics.py#L41 :param refs: A `list` of `list` of reference `str`s. :param preds: A `list` of predicted `str`s. """ score = sacrebleu.corpus_bleu( preds, refs, smooth_method="exp", smooth_value=0.0, force=False, lowercase=False, tokenize="intl", use_effective_order=False, ).score return score def rouge(refs, preds): """ Returns `t5` style ROUGE scores. See the related implementation: https://github.com/google-research/text-to-text-transfer-transformer/blob/3d10afd51ba97ac29eb66ae701eca274488202f7/t5/evaluation/metrics.py#L68 :param refs: A `list` of reference `strs`. :param preds: A `list` of predicted `strs`. """ rouge_types = ["rouge1", "rouge2", "rougeLsum"] scorer = rouge_scorer.RougeScorer(rouge_types) # Add newlines between sentences to correctly compute `rougeLsum`. def _prepare_summary(summary): summary = summary.replace(" . ", ".\n") return summary # Accumulate confidence intervals. aggregator = scoring.BootstrapAggregator() for ref, pred in zip(refs, preds): ref = _prepare_summary(ref) pred = _prepare_summary(pred) aggregator.add_scores(scorer.score(ref, pred)) result = aggregator.aggregate() return {type: result[type].mid.fmeasure * 100 for type in rouge_types} # @register_task("cnndm_v2") class CNNDMv2(ConfigurableTask): VERSION = 0 DATASET_PATH = "cnn_dailymail" DATASET_NAME = "3.0.0" def __init__(self): super().__init__(config={'metadata': {'version': self.VERSION}}) self.factkb_tokenizer = None self.factkb_model = None self.bert_score = None def maybe_init_factkb(self): if self.factkb_tokenizer is None or self.factkb_model is None: from transformers import AutoTokenizer, AutoModelForSequenceClassification self.factkb_tokenizer = AutoTokenizer.from_pretrained("roberta-base", padding="max_length", truncation=True) self.factkb_model = AutoModelForSequenceClassification.from_pretrained("bunsenfeng/FactKB", num_labels=2, device_map="auto") def maybe_init_bertscore(self): if self.bert_score is None: from evaluate import load self.bert_score = load("bertscore") def has_training_docs(self): return True def has_validation_docs(self): return True def has_test_docs(self): return True def training_docs(self): return self.dataset["train"] def validation_docs(self): return self.dataset["validation"] def test_docs(self): return self.dataset["test"] # def custom_prompt(self): # res = "Provide a summary of the provided article." # return res # def fewshot_delimiter(self): # return "\n\n" # From https://arxiv.org/abs/2305.14739 def doc_to_text(self, doc): return f'Article: {doc["article"]}\nSummarize the article. Summary:' @staticmethod def should_decontaminate(): return True def doc_to_decontamination_query(self, doc): return doc["article"] def doc_to_target(self, doc): return doc["highlights"] def construct_requests(self, doc, ctx, **kwargs): """Uses RequestFactory to construct Requests and returns an iterable of Requests which will be sent to the LM. :param doc: The document as returned from training_docs, validation_docs, or test_docs. :param ctx: str The context string, generated by fewshot_context. This includes the natural language description, as well as the few shot examples, and the question part of the document for `doc`. """ return [ Instance( request_type="generate_until", doc=doc, arguments=(ctx, {"until": ["\n"]}), idx=0, **kwargs ) ] def process_results(self, doc, results): completion = results[0] # true_refs, false_refs = doc["correct_answers"], doc["incorrect_answers"] # all_refs = true_refs + false_refs document = doc["article"] gold_summary = doc["highlights"] true_refs = [doc["highlights"]] all_refs = true_refs # ROUGE-N rouge_scores = [rouge([ref], [completion]) for ref in all_refs] # ROUGE-1 rouge1_scores = [score["rouge1"] for score in rouge_scores] # ROUGE-2 rouge2_scores = [score["rouge2"] for score in rouge_scores] # ROUGE-L rougeL_scores = [score["rougeLsum"] for score in rouge_scores] self.maybe_init_factkb() input_factkb = [[completion, document]] factkb_tokens = self.factkb_tokenizer(input_factkb, return_tensors="pt", padding="max_length", truncation=True).to(self.factkb_model.device) factkb_logits = self.factkb_model(**factkb_tokens).logits factkb_res = torch.softmax(factkb_logits, dim=1) self.maybe_init_bertscore() bert_score_res = self.bert_score.compute(predictions=[completion], references=[gold_summary], model_type="microsoft/deberta-xlarge-mnli", lang="en") res = { "rouge1": rouge1_scores[0], "rouge2": rouge2_scores[0], "rougeL": rougeL_scores[0], "factKB": float(factkb_res[0][1]), "bertscore_precision": float(bert_score_res["precision"][0]), "bertscore_recall": float(bert_score_res["recall"][0]), "bertscore_f1": float(bert_score_res["f1"][0]) } return res def aggregation(self): """ :returns: {str: [float] -> float} A dictionary where keys are the names of submetrics and values are functions that aggregate a list of metrics """ return {k: mean for k in ["rouge1", "rouge2", "rougeL", "factKB", "bertscore_precision", "bertscore_recall", "bertscore_f1"]} def higher_is_better(self): """ :returns: {str: bool} A dictionary where keys are the names of submetrics and values are whether a higher value of the submetric is better """ return {k: True for k in ["rouge1", "rouge2", "rougeL", "factKB", "bertscore_precision", "bertscore_recall", "bertscore_f1"]}