# Copyright (c) Alibaba Cloud. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """A simple web interactive chat demo based on gradio.""" import os from argparse import ArgumentParser import gradio as gr import mdtex2html import piexif import os from transformers import AutoModelForCausalLM, AutoTokenizer from transformers.generation import GenerationConfig from diffusers import AutoPipelineForText2Image import torch import json import time import datetime from file_server import start_server, get_local_ip DEFAULT_CKPT_PATH = 'hahahafofo/Qwen-1_8B-Stable-Diffusion-Prompt' OUTPUT_IMAGES_DIR = "output_images" OUTPUT_HTML_DIR = "output_html" def _get_args(): parser = ArgumentParser() parser.add_argument("-c", "--checkpoint-path", type=str, default=DEFAULT_CKPT_PATH, help="Checkpoint name or path, default to %(default)r") parser.add_argument("--cpu-only", action="store_true", help="Run demo with CPU only") parser.add_argument("--share", action="store_true", default=False, help="Create a publicly shareable link for the interface.") parser.add_argument("--inbrowser", action="store_true", default=False, help="Automatically launch the interface in a new tab on the default browser.") parser.add_argument("--server-port", type=int, default=8000, help="Demo server port.") parser.add_argument("--server-name", type=str, default="0.0.0.0", help="Demo server name.") parser.add_argument("--file-server-port", type=int, default=8001, help="file server port.") args = parser.parse_args() return args def _load_model_tokenizer(args): tokenizer = AutoTokenizer.from_pretrained( args.checkpoint_path, trust_remote_code=True, resume_download=True, ) if args.cpu_only: device_map = "cpu" else: device_map = "auto" model = AutoModelForCausalLM.from_pretrained( args.checkpoint_path, device_map=device_map, trust_remote_code=True, resume_download=True, ).eval() config = GenerationConfig.from_pretrained( args.checkpoint_path, trust_remote_code=True, resume_download=True, ) config.max_new_tokens = 100 return model, tokenizer, config def _load_sdxl_turbo(): pipe = AutoPipelineForText2Image.from_pretrained( "stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16" ) pipe.to("cuda") return pipe def postprocess(self, y): if y is None: return [] for i, (message, response) in enumerate(y): y[i] = ( None if message is None else mdtex2html.convert(message), None if response is None else mdtex2html.convert(response), ) return y gr.Chatbot.postprocess = postprocess def _save_image2html(image, query, prompt): # 将文本信息编码为 JSON 并保存到 EXIF exif_dict = {"0th": {}, "Exif": {}, "1st": {}, "thumbnail": None, "GPS": {}} exif_dict["0th"][piexif.ImageIFD.ImageDescription] = json.dumps({"prompt": prompt}) exif_bytes = piexif.dump(exif_dict) file_name = f"{int(time.time())}.png" image_path = os.path.join(OUTPUT_IMAGES_DIR, file_name) image.save(image_path, "PNG", exif=exif_bytes) # 创建 HTML 内容 # 初始 HTML 结构 html_start = """ Image and Prompt History

Image and Prompt History

" # 将 HTML 内容写入文件 html_file_path = os.path.join(OUTPUT_HTML_DIR, f"{datetime.datetime.now().strftime('%Y-%m-%d')}.html") # 创建新的列表项 new_list_item = f"""
  • Prompt: {prompt}

    Input: {query}

    {image_path}
  • """ # 读取现有的 HTML 文件 try: with open(html_file_path, 'r', encoding='utf-8') as file: existing_html = file.read() except FileNotFoundError: # 如果文件不存在,创建一个新的 HTML 结构 existing_html = html_start + html_end # 在列表结束标签前插入新的列表项 updated_html = existing_html.replace(html_end, new_list_item + html_end) # 将更新后的 HTML 写回文件 with open(html_file_path, 'w+', encoding='utf-8') as file: file.write(updated_html) return f"HTML content appended to {html_file_path}" def _parse_text(text): lines = text.split("\n") lines = [line for line in lines if line != ""] count = 0 for i, line in enumerate(lines): if "```" in line: count += 1 items = line.split("`") if count % 2 == 1: lines[i] = f'
    '
                else:
                    lines[i] = f"
    " else: if i > 0: if count % 2 == 1: line = line.replace("`", r"\`") line = line.replace("<", "<") line = line.replace(">", ">") line = line.replace(" ", " ") line = line.replace("*", "*") line = line.replace("_", "_") line = line.replace("-", "-") line = line.replace(".", ".") line = line.replace("!", "!") line = line.replace("(", "(") line = line.replace(")", ")") line = line.replace("$", "$") lines[i] = "
    " + line text = "".join(lines) return text def _launch_demo(args, image_pipe, model, tokenizer, config): def predict( _query, _chatbot, _task_history, _prompt_system: str = "You are a helpful assistant", _prompt_template: str = "" ): print(f"User: {_parse_text(_query)}") _chatbot.append((_parse_text(_query), "")) full_response = "" _query = f"{_prompt_template}\n{_query}" for response in model.chat_stream( tokenizer, _query, history=_task_history, generation_config=config, system=_prompt_system ): _chatbot[-1] = (_parse_text(_query), _parse_text(response)) yield _chatbot full_response = _parse_text(response) print(f"History: {_task_history}") _task_history.append((_query, full_response)) print(f"Qwen-Chat: {_parse_text(full_response)}") def draw_image(_chatbot, _task_history, num_inference_steps, ): if len(_task_history) == 0: return prompt = _task_history[-1][-1] if len(prompt) == 0: return print(f"===\n{_chatbot} \n\n{_task_history} ====\n") print(f"{prompt}") image_pil = image_pipe(prompt=prompt, num_inference_steps=num_inference_steps, guidance_scale=0.0).images[0] _save_image2html(image_pil, query=_chatbot[-1][0], prompt=prompt) return image_pil def regenerate(_chatbot, _task_history, _prompt_system): if not _task_history: yield _chatbot return item = _task_history.pop(-1) _chatbot.pop(-1) yield from predict(item[0], _chatbot, _task_history, _prompt_template="", _prompt_system=_prompt_system) def reset_user_input(): return gr.update(value="") def reset_state(_chatbot, _task_history): _task_history.clear() _chatbot.clear() import gc gc.collect() torch.cuda.empty_cache() return _chatbot with gr.Blocks() as demo: task_history = gr.State([]) with gr.Row(): with gr.Column(scale=1, min_width=600): image = gr.Image(type="pil") query = gr.Textbox(lines=4, label='Input') with gr.Row(): empty_btn = gr.Button("🧹 Clear History (清除历史)") submit_btn = gr.Button("🚀 Submit (生成)") regen_btn = gr.Button("🤔️ Regenerate (重试)") image_btn = gr.Button("🎨 Image (生成)") talk_btn = gr.Button("💬 Talk (聊天)") with gr.Column(scale=1, min_width=600): with gr.Tab(label="Qwen"): temperature = gr.Slider( minimum=0.0, maximum=1.0, step=0.01, value=0.9, label="Temperature", info="越小越遵循输入,越大越充满想象" ) with gr.Row(): prompt_system_radio = gr.Radio( ["中英文翻译", "文言文", "画家", "剧情", "AI助手"], label='角色', info="根据输入选择合适的角色" ) prompt_system = gr.Textbox( lines=1, label='System Template', value="你擅长翻译中文到英语。" ) prompt_template = gr.Textbox( lines=1, label='Prompt Template', value="必须使用英语根据主题描述一副画面:" ) chatbot = gr.Chatbot(label='Qwen-Chat', elem_classes="control-height") with gr.Tab(label="Config"): with gr.Row(): top_p = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=1.0, label="Top-p") top_k = gr.Slider(minimum=0, maximum=100, step=1, value=50, label="Top-k") max_new_tokens = gr.Slider(minimum=1, maximum=1024, step=1, value=100, label="Max New Tokens") repetition_penalty = gr.Slider( minimum=1.0, maximum=2.0, step=0.01, value=1.1, label="repetition penalty", info="重复惩罚" ) with gr.Row(): num_inference_steps = gr.Slider(minimum=1, maximum=60, step=1, value=4, label="Image Steps") with gr.Tab(label="History"): file_server = f"http://{get_local_ip()}:{args.file_server_port}/" html_file_path = f"{datetime.datetime.now().strftime('%Y-%m-%d')}.html" html_fns = [fn for fn in os.listdir(OUTPUT_HTML_DIR) if fn.endswith(".html")] gr.Markdown(f'{html_file_path}') for fn in html_fns: if fn == html_file_path: continue gr.Markdown(f'{fn}') PROMPT_SYSTEM_DICT = { "中英文翻译": "你擅长翻译中文到英语。", "文言文": "你擅长文言文翻译为英语。", "画家": "你是绘画大师,擅长描绘画面细节。", "剧情": "你是剧作家,擅长创作连续的漫画脚本。", "AI助手": "You are a helpful assistant", } prompt_system_radio.change(lambda val: (PROMPT_SYSTEM_DICT[val]), inputs=[prompt_system_radio], outputs=[prompt_system]) temperature.change(lambda val: config.update(temperature=val), inputs=[temperature], outputs=[]) top_k.change(lambda val: config.update(top_k=val), inputs=[top_k], outputs=[]) top_p.change(lambda val: config.update(top_p=val), inputs=[top_p], outputs=[]) max_new_tokens.change( lambda val: config.update(max_new_tokens=val), inputs=[max_new_tokens], outputs=[], ) repetition_penalty.change( lambda val: config.update(repetition_penalty=val), inputs=[repetition_penalty], outputs=[], ) talk_btn.click(predict, [query, chatbot, task_history, prompt_system], [chatbot], show_progress=True) submit_btn.click(predict, [query, chatbot, task_history, prompt_system, prompt_template], [chatbot], show_progress=True) submit_btn.click(reset_user_input, [], [query]) empty_btn.click(reset_state, [chatbot, task_history], outputs=[chatbot], show_progress=True) image_btn.click(draw_image, [chatbot, task_history, num_inference_steps], outputs=[image], show_progress=True) regen_btn.click(regenerate, [chatbot, task_history, prompt_system], [chatbot], show_progress=True) demo.queue().launch( share=args.share, inbrowser=args.inbrowser, server_port=args.server_port, server_name=args.server_name, ) def main(): args = _get_args() start_server(server_port=args.file_server_port) os.makedirs(OUTPUT_IMAGES_DIR, exist_ok=True) os.makedirs(OUTPUT_HTML_DIR, exist_ok=True) model, tokenizer, config = _load_model_tokenizer(args) pipe = _load_sdxl_turbo() _launch_demo(args, pipe, model, tokenizer, config) if __name__ == '__main__': main()