import os import sys sys.path.append(os.path.join(os.path.dirname(__file__), "..", "..")) import timm import torch import torch.nn as nn from transformers import CLIPModel as CLIPTransformersModel from utils import configs from utils.functional import check_data_type_variable, get_device class CLIPModel(nn.Module): def __init__( self, model_clip_name: str, freeze_model: bool, pretrained_model: bool, num_classes: int, ): super().__init__() self.model_clip_name = model_clip_name self.freeze_model = freeze_model self.pretrained_model = pretrained_model self.num_classes = num_classes self.device = get_device() self.check_arguments() self.init_model() def check_arguments(self): check_data_type_variable(self.model_clip_name, str) check_data_type_variable(self.freeze_model, bool) check_data_type_variable(self.pretrained_model, bool) check_data_type_variable(self.num_classes, int) if self.model_clip_name != configs.CLIP_NAME_MODEL: raise ValueError( f"Model clip name must be {configs.CLIP_NAME_MODEL}, but it is {self.model_clip_name}" ) def init_model(self): clip_model = CLIPTransformersModel.from_pretrained(self.model_clip_name) for layer in clip_model.children(): if hasattr(layer, "reset_parameters") and not self.pretrained_model: layer.reset_parameters() for param in clip_model.parameters(): param.required_grad = False if not self.freeze_model else True self.vision_model = clip_model.vision_model.to(self.device) self.visual_projection = clip_model.visual_projection.to(self.device).to( self.device ) self.classifier = nn.Linear( 512, 1 if self.num_classes in (1, 2) else self.num_classes ).to(self.device) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.vision_model(x) x = self.visual_projection(x.pooler_output) x = self.classifier(x) return x class TorchModel(nn.Module): def __init__( self, name_model: str, freeze_model: bool, pretrained_model: bool, num_classes: int, ): super().__init__() self.name_model = name_model self.freeze_model = freeze_model self.pretrained_model = pretrained_model self.num_classes = num_classes self.device = get_device() self.check_arguments() self.init_model() def check_arguments(self): check_data_type_variable(self.name_model, str) check_data_type_variable(self.freeze_model, bool) check_data_type_variable(self.pretrained_model, bool) check_data_type_variable(self.num_classes, int) if self.name_model not in tuple(configs.NAME_MODELS.keys()): raise ValueError( f"Name model must be in {tuple(configs.NAME_MODELS.keys())}, but it is {self.name_model}" ) def init_model(self): self.model = timm.create_model( self.name_model, pretrained=self.pretrained_model, num_classes=0 ).to(self.device) for param in self.model.parameters(): param.required_grad = False if not self.freeze_model else True self.classifier = nn.Linear( self.model.num_features, 1 if self.num_classes in (1, 2) else self.num_classes, ).to(self.device) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.model(x) x = self.classifier(x) return x