import os import sys sys.path.append(os.path.join(os.path.dirname(__file__), "..", "..")) import matplotlib.pyplot as plt import numpy as np from PIL import Image from models.base_model import BaseModelGradCAM from utils import configs from .lightning_module import ImageClassificationLightningModule class DeepLearningGradCAM(BaseModelGradCAM): def __init__( self, name_model: str, freeze_model: bool, pretrained_model: bool, support_set_method: str, ): super().__init__(name_model, freeze_model, pretrained_model, support_set_method) self.init_model() self.set_grad_cam() def init_model(self): self.model = ImageClassificationLightningModule.load_from_checkpoint( os.path.join( configs.WEIGHTS_PATH, self.name_model, self.support_set_method, "best.ckpt", ), name_model=self.name_model, freeze_model=self.freeze_model, pretrained_model=self.pretrained_model, ) self.model = self.model.model for layer in self.model.children(): if hasattr(layer, "reset_parameters") and not self.pretrained_model: layer.reset_parameters() for param in self.model.parameters(): param.required_grad = False if not self.freeze_model else True self.model.to(self.device) self.model.eval() if __name__ == "__main__": model = DeepLearningGradCAM("resnet50", False, True, "5_shot") image = np.array( Image.open( "../../assets/example_images/gon/306e5d35-b301-4299-8022-0c89dc0b7690.png" ).convert("RGB") ) gradcam = model.get_grad_cam(image) plt.imshow(gradcam) plt.show()