import os from threading import Thread from typing import Iterator import gradio as gr import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer DESCRIPTION = """\ # Prot2Text Demo A demo to generate a protein's funtion with its amino acid sequence and its structure using [Prot2Text Base v1.1](https://huggingface.co/habdine/Prot2Text-Base-v1-1). To test this model, only enter below, the AlphaFoldDB ID of the protein. """ MAX_MAX_NEW_TOKENS = 256 DEFAULT_MAX_NEW_TOKENS = 100 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") tokenizer = AutoTokenizer.from_pretrained('habdine/Prot2Text-Base-v1-1', trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained('habdine/Prot2Text-Base-v1-1', trust_remote_code=True).to(device) model.eval() @spaces.GPU(duration=90) def generate( message: str, chat_history: list[dict], max_new_tokens: int = 1024, do_sample: bool = False, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2, ) -> Iterator[str]: streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( protein_pdbID=message, tokenizer=tokenizer, device=device, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=do_sample, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, repetition_penalty=repetition_penalty, ) t = Thread(target=model.generate_protein_description, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) chat_interface = gr.ChatInterface( fn=generate, additional_inputs=[ gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ), gr.Checkbox(label="Do Sample"), gr.Slider( label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6, ), gr.Slider( label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9, ), gr.Slider( label="Top-k", minimum=1, maximum=1000, step=1, value=50, ), gr.Slider( label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.0, ), ], stop_btn=None, examples=[ ['P0A0V1'], ["Q10MK9"], ["Q6K5W5"], ["Q65WY8"] ], cache_examples=False, type="messages", ) with gr.Blocks(css_paths="style.css", fill_height=True) as demo: gr.Markdown(DESCRIPTION) gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button") chat_interface.render() if __name__ == "__main__": demo.queue(max_size=20).launch(server_name="0.0.0.0", server_port=7860)