Spaces:
Runtime error
Runtime error
File size: 12,944 Bytes
5d756f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
import atexit
from collections import defaultdict
import logging
import typing
import torch
import time
from dp2.utils import vis_utils
from dp2 import utils
from tops import logger, checkpointer
import tops
from easydict import EasyDict
def accumulate_gradients(params, fp16_ddp_accumulate):
if len(params) == 0:
return
params = [param for param in params if param.grad is not None]
flat = torch.cat([param.grad.flatten() for param in params])
orig_dtype = flat.dtype
if tops.world_size() > 1:
if fp16_ddp_accumulate:
flat = flat.half() / tops.world_size()
else:
flat /= tops.world_size()
torch.distributed.all_reduce(flat)
flat = flat.to(orig_dtype)
grads = flat.split([param.numel() for param in params])
for param, grad in zip(params, grads):
param.grad = grad.reshape(param.shape)
def accumulate_buffers(module: torch.nn.Module):
buffers = [buf for buf in module.buffers()]
if len(buffers) == 0:
return
flat = torch.cat([buf.flatten() for buf in buffers])
if tops.world_size() > 1:
torch.distributed.all_reduce(flat)
flat /= tops.world_size()
bufs = flat.split([buf.numel() for buf in buffers])
for old, new in zip(buffers, bufs):
old.copy_(new.reshape(old.shape), non_blocking=True)
def check_ddp_consistency(module):
if tops.world_size() == 1:
return
assert isinstance(module, torch.nn.Module)
assert isinstance(module, torch.nn.Module)
params_buffs = list(module.named_parameters()) + list(module.named_buffers())
for name, tensor in params_buffs:
fullname = type(module).__name__ + '.' + name
tensor = tensor.detach()
if tensor.is_floating_point():
tensor = torch.nan_to_num(tensor)
other = tensor.clone()
torch.distributed.broadcast(tensor=other, src=0)
assert (tensor == other).all(), fullname
class AverageMeter():
def __init__(self) -> None:
self.to_log = dict()
self.n = defaultdict(int)
pass
@torch.no_grad()
def update(self, values: dict):
for key, value in values.items():
self.n[key] += 1
if key in self.to_log:
self.to_log[key] += value.mean().detach()
else:
self.to_log[key] = value.mean().detach()
def get_average(self):
return {key: value / self.n[key] for key, value in self.to_log.items()}
class GANTrainer:
def __init__(
self,
G: torch.nn.Module,
D: torch.nn.Module,
G_EMA: torch.nn.Module,
D_optim: torch.optim.Optimizer,
G_optim: torch.optim.Optimizer,
dl_train: typing.Iterator,
dl_val: typing.Iterable,
scaler_D: torch.cuda.amp.GradScaler,
scaler_G: torch.cuda.amp.GradScaler,
ims_per_log: int,
max_images_to_train: int,
loss_handler,
ims_per_val: int,
evaluate_fn,
batch_size: int,
broadcast_buffers: bool,
fp16_ddp_accumulate: bool,
save_state: bool,
*args, **kwargs):
super().__init__(*args, **kwargs)
self.G = G
self.D = D
self.G_EMA = G_EMA
self.D_optim = D_optim
self.G_optim = G_optim
self.dl_train = dl_train
self.dl_val = dl_val
self.scaler_D = scaler_D
self.scaler_G = scaler_G
self.loss_handler = loss_handler
self.max_images_to_train = max_images_to_train
self.images_per_val = ims_per_val
self.images_per_log = ims_per_log
self.evaluate_fn = evaluate_fn
self.batch_size = batch_size
self.broadcast_buffers = broadcast_buffers
self.fp16_ddp_accumulate = fp16_ddp_accumulate
self.train_state = EasyDict(
next_log_step=0,
next_val_step=ims_per_val,
total_time=0
)
checkpointer.register_models(dict(
generator=G, discriminator=D, EMA_generator=G_EMA,
D_optimizer=D_optim,
G_optimizer=G_optim,
train_state=self.train_state,
scaler_D=self.scaler_D,
scaler_G=self.scaler_G
))
if checkpointer.has_checkpoint():
checkpointer.load_registered_models()
logger.log(f"Resuming training from: global step: {logger.global_step()}")
else:
logger.add_dict({
"stats/discriminator_parameters": tops.num_parameters(self.D),
"stats/generator_parameters": tops.num_parameters(self.G),
}, commit=False)
if save_state:
# If the job is unexpectedly killed, there could be a mismatch between previously saved checkpoint and the current checkpoint.
atexit.register(checkpointer.save_registered_models)
self._ims_per_log = ims_per_log
self.to_log = AverageMeter()
self.trainable_params_D = [param for param in self.D.parameters() if param.requires_grad]
self.trainable_params_G = [param for param in self.G.parameters() if param.requires_grad]
logger.add_dict({
"stats/discriminator_trainable_parameters": sum(p.numel() for p in self.trainable_params_D),
"stats/generator_trainable_parameters": sum(p.numel() for p in self.trainable_params_G),
}, commit=False, level=logging.INFO)
check_ddp_consistency(self.D)
check_ddp_consistency(self.G)
check_ddp_consistency(self.G_EMA.generator)
def train_loop(self):
self.log_time()
while logger.global_step() <= self.max_images_to_train:
batch = next(self.dl_train)
self.G_EMA.update_beta()
self.to_log.update(self.step_D(batch))
self.to_log.update(self.step_G(batch))
self.G_EMA.update(self.G)
if logger.global_step() >= self.train_state.next_log_step:
to_log = {f"loss/{key}": item.item() for key, item in self.to_log.get_average().items()}
to_log.update({"amp/grad_scale_G": self.scaler_G.get_scale()})
to_log.update({"amp/grad_scale_D": self.scaler_D.get_scale()})
self.to_log = AverageMeter()
logger.add_dict(to_log, commit=True)
self.train_state.next_log_step += self.images_per_log
if self.scaler_D.get_scale() < 1e-8 or self.scaler_G.get_scale() < 1e-8:
print("Stopping training as gradient scale < 1e-8")
logger.log("Stopping training as gradient scale < 1e-8")
break
if logger.global_step() >= self.train_state.next_val_step:
self.evaluate()
self.log_time()
self.save_images()
self.train_state.next_val_step += self.images_per_val
logger.step(self.batch_size*tops.world_size())
logger.log(f"Reached end of training at step {logger.global_step()}.")
checkpointer.save_registered_models()
def estimate_ims_per_hour(self):
batch = next(self.dl_train)
n_ims = int(100e3)
n_steps = int(n_ims / (self.batch_size * tops.world_size()))
n_ims = n_steps * self.batch_size * tops.world_size()
for i in range(10): # Warmup
self.G_EMA.update_beta()
self.step_D(batch)
self.step_G(batch)
self.G_EMA.update(self.G)
start_time = time.time()
for i in utils.tqdm_(list(range(n_steps))):
self.G_EMA.update_beta()
self.step_D(batch)
self.step_G(batch)
self.G_EMA.update(self.G)
total_time = time.time() - start_time
ims_per_sec = n_ims / total_time
ims_per_hour = ims_per_sec * 60*60
ims_per_day = ims_per_hour * 24
logger.log(f"Images per hour: {ims_per_hour/1e6:.3f}M")
logger.log(f"Images per day: {ims_per_day/1e6:.3f}M")
import math
ims_per_4_day = int(math.ceil(ims_per_day / tops.world_size() * 4))
logger.log(f"Images per 4 days: {ims_per_4_day}")
logger.add_dict({
"stats/ims_per_day": ims_per_day,
"stats/ims_per_4_day": ims_per_4_day
})
def log_time(self):
if not hasattr(self, "start_time"):
self.start_time = time.time()
self.last_time_step = logger.global_step()
return
n_images = logger.global_step() - self.last_time_step
if n_images == 0:
return
n_secs = time.time() - self.start_time
n_ims_per_sec = n_images / n_secs
training_time_hours = n_secs / 60 / 60
self.train_state.total_time += training_time_hours
remaining_images = self.max_images_to_train - logger.global_step()
remaining_time = remaining_images / n_ims_per_sec / 60 / 60
logger.add_dict({
"stats/n_ims_per_sec": n_ims_per_sec,
"stats/total_traing_time_hours": self.train_state.total_time,
"stats/remaining_time_hours": remaining_time
})
self.last_time_step = logger.global_step()
self.start_time = time.time()
def save_images(self):
dl_val = iter(self.dl_val)
batch = next(dl_val)
# TRUNCATED visualization
ims_to_log = 8
self.G_EMA.eval()
z = self.G.get_z(batch["img"])
fakes_truncated = self.G_EMA.sample(**batch, truncation_value=0)["img"]
fakes_truncated = utils.denormalize_img(fakes_truncated).mul(255).byte()[:ims_to_log].cpu()
if "__key__" in batch:
batch.pop("__key__")
real = vis_utils.visualize_batch(**tops.to_cpu(batch))[:ims_to_log]
to_vis = torch.cat((real, fakes_truncated))
logger.add_images("images/truncated", to_vis, nrow=2)
# Diverse images
ims_diverse = 3
batch = next(dl_val)
to_vis = []
for i in range(ims_diverse):
z = self.G.get_z(batch["img"])[:1].repeat(batch["img"].shape[0], 1)
fakes = utils.denormalize_img(self.G_EMA(**batch, z=z)["img"]).mul(255).byte()[:ims_to_log].cpu()
to_vis.append(fakes)
if "__key__" in batch:
batch.pop("__key__")
reals = vis_utils.visualize_batch(**tops.to_cpu(batch))[:ims_to_log]
to_vis.insert(0, reals)
to_vis = torch.cat(to_vis)
logger.add_images("images/diverse", to_vis, nrow=ims_diverse+1)
self.G_EMA.train()
pass
def evaluate(self):
logger.log("Stating evaluation.")
self.G_EMA.eval()
try:
checkpointer.save_registered_models(max_keep=3)
except Exception:
logger.log("Could not save checkpoint.")
if self.broadcast_buffers:
check_ddp_consistency(self.G)
check_ddp_consistency(self.D)
metrics = self.evaluate_fn(generator=self.G_EMA, dataloader=self.dl_val)
metrics = {f"metrics/{k}": v for k, v in metrics.items()}
logger.add_dict(metrics, level=logger.logger.INFO)
def step_D(self, batch):
utils.set_requires_grad(self.trainable_params_D, True)
utils.set_requires_grad(self.trainable_params_G, False)
tops.zero_grad(self.D)
loss, to_log = self.loss_handler.D_loss(batch, grad_scaler=self.scaler_D)
with torch.autograd.profiler.record_function("D_step"):
self.scaler_D.scale(loss).backward()
accumulate_gradients(self.trainable_params_D, fp16_ddp_accumulate=self.fp16_ddp_accumulate)
if self.broadcast_buffers:
accumulate_buffers(self.D)
accumulate_buffers(self.G)
# Step will not unscale if unscale is called previously.
self.scaler_D.step(self.D_optim)
self.scaler_D.update()
utils.set_requires_grad(self.trainable_params_D, False)
utils.set_requires_grad(self.trainable_params_G, False)
return to_log
def step_G(self, batch):
utils.set_requires_grad(self.trainable_params_D, False)
utils.set_requires_grad(self.trainable_params_G, True)
tops.zero_grad(self.G)
loss, to_log = self.loss_handler.G_loss(batch, grad_scaler=self.scaler_G)
with torch.autograd.profiler.record_function("G_step"):
self.scaler_G.scale(loss).backward()
accumulate_gradients(self.trainable_params_G, fp16_ddp_accumulate=self.fp16_ddp_accumulate)
if self.broadcast_buffers:
accumulate_buffers(self.G)
accumulate_buffers(self.D)
self.scaler_G.step(self.G_optim)
self.scaler_G.update()
utils.set_requires_grad(self.trainable_params_D, False)
utils.set_requires_grad(self.trainable_params_G, False)
return to_log
|