import gradio as gr import json import os import shutil # import magic # import ollama from langchain_community.embeddings.sentence_transformer import SentenceTransformerEmbeddings from langchain_community.vectorstores.qdrant import Qdrant from langchain_core.runnables import RunnablePassthrough from langchain_core.documents import Document from langchain_core.prompts import ChatPromptTemplate from langchain_core.output_parsers import StrOutputParser # from langchain_community.chains import from langchain_community.chat_models import ChatOllama from langchain_chroma import Chroma from hugchat import hugchat from hugchat.login import Login import dotenv from utils import HuggingChat from langchain import PromptTemplate dotenv.load_dotenv() class GradioApp: def __init__(self): # self.llm = ChatOllama(model="phi3:3.8b", base_url="http://localhost:11434", num_gpu=32) template = """ You are a helpful health assistant. These Human will ask you a questions about their pregnancy health. Use following piece of context to answer the question. If you don't know the answer, just say you don't know. Keep the answer within 2 sentences and concise. Context: {context} Question: {question} Answer: """ self.llm = HuggingChat(email = os.getenv("HF_EMAIL") , psw = os.getenv("HF_PASS") ) self.chain = (self.llm | StrOutputParser()) def user(self,user_message, history): return "", history + [[user_message, None]] def bot(self,history): print(history) prompt = history[-1][0] or "" for chunks in self.chain.stream(prompt): history[-1][1] = history[-1][1] or "" history[-1][1] += chunks yield history history[-1][1] = history[-1][1] or "" history[-1][1] += self.chain.invoke(prompt) print(history[-1][1]) print(history) return history with gr.Blocks() as demo: gradio_app = GradioApp() # files = gr.Files(label="Upload Documents and Medical Reports", type="filepath", file_types=["pdf", "docx", "jpg", "jpeg", "png"]) # upload_button = gr.UploadButton(label="Upload Documents and Medical Reports", type="filepath", file_count='multiple', file_types=["pdf", "docx", "jpg", "jpeg", "png"], ) output_text = gr.Markdown(label="Output", value=" ") infer_status = gr.Label("Infer Status: ", visible=False) # upload_button.upload(gradio_app.upload_files, upload_button, [files, output_text]) chatbot = gr.Chatbot() msg = gr.Textbox() clear = gr.Button("Clear") msg.submit(gradio_app.user, [msg, chatbot], [msg, chatbot], queue=False).then( gradio_app.bot, chatbot, chatbot ) clear.click(lambda: None, None, chatbot, queue=False) # demo.queue() demo.launch(share=True)