import argparse import os import torch import pytorch_lightning as ptl from pytorch_lightning.loggers import TensorBoardLogger from detector.data import FontDataModule from detector.model import FontDetector, ResNet18Regressor from utils import get_current_tag torch.set_float32_matmul_precision("high") parser = argparse.ArgumentParser() parser.add_argument("-d", "--devices", nargs="*", type=int, default=[0]) args = parser.parse_args() devices = args.devices final_batch_size = 128 single_device_num_workers = 24 lr = 0.0001 b1 = 0.9 b2 = 0.999 lambda_font = 2.0 lambda_direction = 0.5 lambda_regression = 1.0 regression_use_tanh = True augmentation = True num_warmup_epochs = 5 num_epochs = 100 log_every_n_steps = 100 num_device = len(devices) data_module = FontDataModule( batch_size=final_batch_size // num_device, num_workers=single_device_num_workers, pin_memory=True, train_shuffle=True, val_shuffle=False, test_shuffle=False, regression_use_tanh=regression_use_tanh, train_transforms=augmentation, ) num_iters = data_module.get_train_num_iter(num_device) * num_epochs num_warmup_iter = data_module.get_train_num_iter(num_device) * num_warmup_epochs model_name = f"{get_current_tag()}" logger_unconditioned = TensorBoardLogger( save_dir=os.getcwd(), name="tensorboard", version=model_name ) strategy = None if num_device == 1 else "ddp" trainer = ptl.Trainer( max_epochs=num_epochs, logger=logger_unconditioned, devices=devices, accelerator="gpu", enable_checkpointing=True, log_every_n_steps=log_every_n_steps, strategy=strategy, deterministic=True, ) model = ResNet18Regressor(regression_use_tanh=regression_use_tanh) detector = FontDetector( model=model, lambda_font=lambda_font, lambda_direction=lambda_direction, lambda_regression=lambda_regression, lr=lr, betas=(b1, b2), num_warmup_iters=num_warmup_iter, num_iters=num_iters, ) trainer.fit(detector, datamodule=data_module) trainer.test(detector, datamodule=data_module)