import torchmetrics from . import config from typing import Tuple, Dict, List, Any import numpy as np import torch import torchvision import torch.nn as nn import pytorch_lightning as ptl class DeepFontBaseline(nn.Module): def __init__(self) -> None: super().__init__() self.model = nn.Sequential( nn.Conv2d(3, 64, 11, 2), nn.BatchNorm2d(64), nn.ReLU(), nn.MaxPool2d(2, 2), nn.Conv2d(64, 128, 3, 1, 1), nn.BatchNorm2d(128), nn.ReLU(), nn.MaxPool2d(2, 2), nn.Conv2d(128, 256, 3, 1, 1), nn.ReLU(), nn.Conv2d(256, 256, 3, 1, 1), nn.ReLU(), nn.Conv2d(256, 256, 3, 1, 1), nn.ReLU(), # fc nn.Flatten(), nn.Linear(256 * 12 * 12, 4096), nn.ReLU(), nn.Linear(4096, 4096), nn.ReLU(), nn.Linear(4096, config.FONT_COUNT), ) def forward(self, X): return self.model(X) class ResNet18Regressor(nn.Module): def __init__(self, pretrained: bool = False, regression_use_tanh: bool = False): super().__init__() weights = torchvision.models.ResNet18_Weights.DEFAULT if pretrained else None self.model = torchvision.models.resnet18(weights=weights) self.model.fc = nn.Linear(512, config.FONT_COUNT + 12) self.regression_use_tanh = regression_use_tanh def forward(self, X): X = self.model(X) # [0, 1] if not self.regression_use_tanh: X[..., config.FONT_COUNT + 2 :] = X[..., config.FONT_COUNT + 2 :].sigmoid() else: X[..., config.FONT_COUNT + 2 :] = X[..., config.FONT_COUNT + 2 :].tanh() return X class ResNet34Regressor(nn.Module): def __init__(self, pretrained: bool = False, regression_use_tanh: bool = False): super().__init__() weights = torchvision.models.ResNet34_Weights.DEFAULT if pretrained else None self.model = torchvision.models.resnet34(weights=weights) self.model.fc = nn.Linear(512, config.FONT_COUNT + 12) self.regression_use_tanh = regression_use_tanh def forward(self, X): X = self.model(X) # [0, 1] if not self.regression_use_tanh: X[..., config.FONT_COUNT + 2 :] = X[..., config.FONT_COUNT + 2 :].sigmoid() else: X[..., config.FONT_COUNT + 2 :] = X[..., config.FONT_COUNT + 2 :].tanh() return X class ResNet50Regressor(nn.Module): def __init__(self, pretrained: bool = False, regression_use_tanh: bool = False): super().__init__() weights = torchvision.models.ResNet50_Weights.DEFAULT if pretrained else None self.model = torchvision.models.resnet50(weights=weights) self.model.fc = nn.Linear(2048, config.FONT_COUNT + 12) self.regression_use_tanh = regression_use_tanh def forward(self, X): X = self.model(X) # [0, 1] if not self.regression_use_tanh: X[..., config.FONT_COUNT + 2 :] = X[..., config.FONT_COUNT + 2 :].sigmoid() else: X[..., config.FONT_COUNT + 2 :] = X[..., config.FONT_COUNT + 2 :].tanh() return X class ResNet101Regressor(nn.Module): def __init__(self, pretrained: bool = False, regression_use_tanh: bool = False): super().__init__() weights = torchvision.models.ResNet101_Weights.DEFAULT if pretrained else None self.model = torchvision.models.resnet101(weights=weights) self.model.fc = nn.Linear(2048, config.FONT_COUNT + 12) self.regression_use_tanh = regression_use_tanh def forward(self, X): X = self.model(X) # [0, 1] if not self.regression_use_tanh: X[..., config.FONT_COUNT + 2 :] = X[..., config.FONT_COUNT + 2 :].sigmoid() else: X[..., config.FONT_COUNT + 2 :] = X[..., config.FONT_COUNT + 2 :].tanh() return X class FontDetectorLoss(nn.Module): def __init__( self, lambda_font, lambda_direction, lambda_regression, font_classification_only ): super().__init__() self.category_loss = nn.CrossEntropyLoss() self.regression_loss = nn.MSELoss() self.lambda_font = lambda_font self.lambda_direction = lambda_direction self.lambda_regression = lambda_regression self.font_classfiication_only = font_classification_only def forward(self, y_hat, y): font_cat = self.category_loss(y_hat[..., : config.FONT_COUNT], y[..., 0].long()) if self.font_classfiication_only: return self.lambda_font * font_cat direction_cat = self.category_loss( y_hat[..., config.FONT_COUNT : config.FONT_COUNT + 2], y[..., 1].long() ) regression = self.regression_loss( y_hat[..., config.FONT_COUNT + 2 :], y[..., 2:] ) return ( self.lambda_font * font_cat + self.lambda_direction * direction_cat + self.lambda_regression * regression ) class CosineWarmupScheduler(torch.optim.lr_scheduler._LRScheduler): def __init__(self, optimizer, warmup, max_iters): self.warmup = warmup self.max_num_iters = max_iters super().__init__(optimizer) def get_lr(self): lr_factor = self.get_lr_factor(epoch=self.last_epoch) return [base_lr * lr_factor for base_lr in self.base_lrs] def get_lr_factor(self, epoch): lr_factor = 0.5 * (1 + np.cos(np.pi * epoch / self.max_num_iters)) if epoch <= self.warmup: lr_factor *= epoch * 1.0 / self.warmup return lr_factor class FontDetector(ptl.LightningModule): def __init__( self, model: nn.Module, lambda_font: float, lambda_direction: float, lambda_regression: float, font_classification_only: bool, lr: float, betas: Tuple[float, float], num_warmup_iters: int, num_iters: int, num_epochs: int, ): super().__init__() self.model = model self.loss = FontDetectorLoss( lambda_font, lambda_direction, lambda_regression, font_classification_only ) self.font_accur_train = torchmetrics.Accuracy( task="multiclass", num_classes=config.FONT_COUNT ) self.font_accur_val = torchmetrics.Accuracy( task="multiclass", num_classes=config.FONT_COUNT ) self.font_accur_test = torchmetrics.Accuracy( task="multiclass", num_classes=config.FONT_COUNT ) if not font_classification_only: self.direction_accur_train = torchmetrics.Accuracy( task="multiclass", num_classes=2 ) self.direction_accur_val = torchmetrics.Accuracy( task="multiclass", num_classes=2 ) self.direction_accur_test = torchmetrics.Accuracy( task="multiclass", num_classes=2 ) self.lr = lr self.betas = betas self.num_warmup_iters = num_warmup_iters self.num_iters = num_iters self.num_epochs = num_epochs self.load_epoch = -1 self.font_classification_only = font_classification_only def forward(self, x): return self.model(x) def training_step( self, batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int ) -> Dict[str, Any]: X, y = batch y_hat = self.forward(X) loss = self.loss(y_hat, y) self.log("train_loss", loss, prog_bar=True, sync_dist=True) # accur self.log( "train_font_accur", self.font_accur_train(y_hat[..., : config.FONT_COUNT], y[..., 0]), sync_dist=True, ) if not self.font_classification_only: self.log( "train_direction_accur", self.direction_accur_train( y_hat[..., config.FONT_COUNT : config.FONT_COUNT + 2], y[..., 1] ), sync_dist=True, ) return {"loss": loss} def on_train_epoch_end(self) -> None: self.log("train_font_accur", self.font_accur_train.compute(), sync_dist=True) self.font_accur_train.reset() if not self.font_classification_only: self.log( "train_direction_accur", self.direction_accur_train.compute(), sync_dist=True, ) self.direction_accur_train.reset() def validation_step( self, batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int ) -> Dict[str, Any]: X, y = batch y_hat = self.forward(X) loss = self.loss(y_hat, y) self.log("val_loss", loss, prog_bar=True, sync_dist=True) self.font_accur_val.update(y_hat[..., : config.FONT_COUNT], y[..., 0]) if not self.font_classification_only: self.direction_accur_val.update( y_hat[..., config.FONT_COUNT : config.FONT_COUNT + 2], y[..., 1] ) return {"loss": loss} def on_validation_epoch_end(self): self.log("val_font_accur", self.font_accur_val.compute(), sync_dist=True) self.font_accur_val.reset() if not self.font_classification_only: self.log( "val_direction_accur", self.direction_accur_val.compute(), sync_dist=True, ) self.direction_accur_val.reset() def test_step(self, batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int): X, y = batch y_hat = self.forward(X) loss = self.loss(y_hat, y) self.log("test_loss", loss, prog_bar=True, sync_dist=True) self.font_accur_test.update(y_hat[..., : config.FONT_COUNT], y[..., 0]) if not self.font_classification_only: self.direction_accur_test.update( y_hat[..., config.FONT_COUNT : config.FONT_COUNT + 2], y[..., 1] ) return {"loss": loss} def on_test_epoch_end(self) -> None: self.log("test_font_accur", self.font_accur_test.compute(), sync_dist=True) self.font_accur_test.reset() if not self.font_classification_only: self.log( "test_direction_accur", self.direction_accur_test.compute(), sync_dist=True, ) self.direction_accur_test.reset() def configure_optimizers(self): optimizer = torch.optim.Adam( self.model.parameters(), lr=self.lr, betas=self.betas ) self.scheduler = CosineWarmupScheduler( optimizer, self.num_warmup_iters, self.num_iters ) print("Load epoch:", self.load_epoch) for _ in range(self.num_iters * (self.load_epoch + 1) // self.num_epochs): self.scheduler.step() print("Current learning rate set to:", self.scheduler.get_last_lr()) return optimizer def optimizer_step( self, epoch: int, batch_idx: int, optimizer, optimizer_idx: int = 0, *args, **kwargs ): super().optimizer_step( epoch, batch_idx, optimizer, optimizer_idx, *args, **kwargs ) self.log("lr", self.scheduler.get_last_lr()[0]) self.scheduler.step() def on_load_checkpoint(self, checkpoint: Dict[str, Any]) -> None: self.load_epoch = checkpoint["epoch"]