gyrojeff's picture
feat: add gradio demo
29efa50
raw
history blame
4.83 kB
import argparse
import os
import gradio as gr
from PIL import Image
from torchvision import transforms
from detector.model import *
from detector import config
from font_dataset.font import load_fonts, load_font_with_exclusion
parser = argparse.ArgumentParser()
parser.add_argument(
"-d",
"--device",
type=int,
default=0,
help="GPU devices to use (default: 0), -1 for CPU",
)
parser.add_argument(
"-c",
"--checkpoint",
type=str,
default=None,
help="Trainer checkpoint path (default: None)",
)
parser.add_argument(
"-m",
"--model",
type=str,
default="resnet18",
choices=["resnet18", "resnet34", "resnet50", "resnet101", "deepfont"],
help="Model to use (default: resnet18)",
)
parser.add_argument(
"-f",
"--font-classification-only",
action="store_true",
help="Font classification only (default: False)",
)
parser.add_argument(
"-z",
"--size",
type=int,
default=512,
help="Model feature image input size (default: 512)",
)
parser.add_argument(
"-s",
"--share",
action="store_true",
help="Get public link via Gradio (default: False)",
)
args = parser.parse_args()
config.INPUT_SIZE = args.size
device = torch.device("cpu") if args.device == -1 else torch.device("cuda", args.device)
regression_use_tanh = False
if args.model == "resnet18":
model = ResNet18Regressor(regression_use_tanh=regression_use_tanh)
elif args.model == "resnet34":
model = ResNet34Regressor(regression_use_tanh=regression_use_tanh)
elif args.model == "resnet50":
model = ResNet50Regressor(regression_use_tanh=regression_use_tanh)
elif args.model == "resnet101":
model = ResNet101Regressor(regression_use_tanh=regression_use_tanh)
elif args.model == "deepfont":
assert args.pretrained is False
assert args.size == 105
assert args.font_classification_only is True
model = DeepFontBaseline()
else:
raise NotImplementedError()
if torch.__version__ >= "2.0" and os.name == "posix":
model = torch.compile(model)
detector = FontDetector(
model=model,
lambda_font=1,
lambda_direction=1,
lambda_regression=1,
font_classification_only=args.font_classification_only,
lr=1,
betas=(1, 1),
num_warmup_iters=1,
num_iters=1e9,
num_epochs=1e9,
)
detector.load_from_checkpoint(
args.checkpoint,
map_location=device,
model=model,
lambda_font=1,
lambda_direction=1,
lambda_regression=1,
font_classification_only=args.font_classification_only,
lr=1,
betas=(1, 1),
num_warmup_iters=1,
num_iters=1e9,
num_epochs=1e9,
)
detector = detector.to(device)
detector.eval()
transform = transforms.Compose(
[
transforms.Resize((512, 512)),
transforms.ToTensor(),
]
)
print("Preparing fonts ...")
font_list, exclusion_rule = load_fonts()
font_list = list(filter(lambda x: not exclusion_rule(x), font_list))
font_list.sort(key=lambda x: x.path)
for i in range(len(font_list)):
font_list[i].path = font_list[i].path[18:] # remove ./dataset/fonts/./ prefix
font_demo_images = []
for i in range(len(font_list)):
font_demo_images.append(Image.open(f"demo_fonts/{i}.jpg").convert("RGB"))
def recognize_font(image):
transformed_image = transform(image)
with torch.no_grad():
transformed_image = transformed_image.to(device)
output = detector(transformed_image.unsqueeze(0))
prob = output[0][: config.FONT_COUNT].softmax(dim=0)
indicies = torch.topk(prob, 9)[1]
return [
{font_list[i].path: float(prob[i]) for i in range(config.FONT_COUNT)},
*[gr.Image.update(value=font_demo_images[indicies[i]]) for i in range(9)],
*[
gr.Markdown.update(
value=f"**Font Name**: {font_list[indicies[i]].path}"
)
for i in range(9)
],
]
def generate_grid(num_columns, num_rows):
ret_images, ret_labels = [], []
with gr.Column():
for _ in range(num_rows):
with gr.Row():
for _ in range(num_columns):
with gr.Column():
ret_labels.append(gr.Markdown("**Font Name**"))
ret_images.append(gr.Image())
return ret_images, ret_labels
with gr.Blocks() as demo:
with gr.Column():
with gr.Row():
inp = gr.Image(type="pil", label="Input Image")
out = gr.Label(num_top_classes=9, label="Output Font")
font_demo_images_blocks, font_demo_labels_blocks = generate_grid(3, 3)
submit_button = gr.Button(label="Submit")
submit_button.click(
fn=recognize_font,
inputs=inp,
outputs=[out, *font_demo_images_blocks, *font_demo_labels_blocks],
)
demo.launch(share=args.share)