import torch import torch.nn as nn from torch.autograd import Variable import torch.nn.functional as F import cv2 as cv import numpy as np from matplotlib import pyplot as plt from math import exp from torchvision import transforms from torchvision.models import vgg16 import torchvision ''' MS-SSIM Loss ''' def gaussian(window_size, sigma): gauss = torch.Tensor([exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)]) return gauss/gauss.sum() def create_window(window_size, channel=1): _1D_window = gaussian(window_size, 1.5).unsqueeze(1) _2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0) window = _2D_window.expand(channel, 1, window_size, window_size).contiguous() return window def ssim(img1, img2, window_size=11, window=None, size_average=True, full=False, val_range=None): # Value range can be different from 255. Other common ranges are 1 (sigmoid) and 2 (tanh). if val_range is None: if torch.max(img1) > 128: max_val = 255 else: max_val = 1 if torch.min(img1) < -0.5: min_val = -1 else: min_val = 0 L = max_val - min_val else: L = val_range padd = 0 (_, channel, height, width) = img1.size() if window is None: real_size = min(window_size, height, width) window = create_window(real_size, channel=channel).to(img1.device) mu1 = F.conv2d(img1, window, padding=padd, groups=channel) mu2 = F.conv2d(img2, window, padding=padd, groups=channel) mu1_sq = mu1.pow(2) mu2_sq = mu2.pow(2) mu1_mu2 = mu1 * mu2 sigma1_sq = F.conv2d(img1 * img1, window, padding=padd, groups=channel) - mu1_sq sigma2_sq = F.conv2d(img2 * img2, window, padding=padd, groups=channel) - mu2_sq sigma12 = F.conv2d(img1 * img2, window, padding=padd, groups=channel) - mu1_mu2 C1 = (0.01 * L) ** 2 C2 = (0.03 * L) ** 2 v1 = 2.0 * sigma12 + C2 v2 = sigma1_sq + sigma2_sq + C2 cs = torch.mean(v1 / v2) # contrast sensitivity ssim_map = ((2 * mu1_mu2 + C1) * v1) / ((mu1_sq + mu2_sq + C1) * v2) if size_average: ret = ssim_map.mean() else: ret = ssim_map.mean(1).mean(1).mean(1) if full: return ret, cs return ret def msssim(img1, img2, window_size=11, size_average=True, val_range=None, normalize=False): weights = torch.FloatTensor([0.0448, 0.2856, 0.3001, 0.2363, 0.1333]).to(img1.device) levels = weights.size()[0] mssim = [] mcs = [] for _ in range(levels): sim, cs = ssim(img1, img2, window_size=window_size, size_average=size_average, full=True, val_range=val_range) mssim.append(sim) mcs.append(cs) img1 = F.avg_pool2d(img1, (2, 2)) img2 = F.avg_pool2d(img2, (2, 2)) mssim = torch.stack(mssim) mcs = torch.stack(mcs) # Normalize (to avoid NaNs during training unstable models, not compliant with original definition) if normalize: mssim = (mssim + 1) / 2 mcs = (mcs + 1) / 2 pow1 = mcs ** weights pow2 = mssim ** weights # From Matlab implementation https://ece.uwaterloo.ca/~z70wang/research/iwssim/ output = torch.prod(pow1[:-1] * pow2[-1]) return output # Classes to re-use window class SSIM(torch.nn.Module): def __init__(self, window_size=11, size_average=True, val_range=None): super(SSIM, self).__init__() self.window_size = window_size self.size_average = size_average self.val_range = val_range # Assume 1 channel for SSIM self.channel = 1 self.window = create_window(window_size) def forward(self, img1, img2): (_, channel, _, _) = img1.size() if channel == self.channel and self.window.dtype == img1.dtype: window = self.window else: window = create_window(self.window_size, channel).to(img1.device).type(img1.dtype) self.window = window self.channel = channel return ssim(img1, img2, window=window, window_size=self.window_size, size_average=self.size_average) class MSSSIM(torch.nn.Module): def __init__(self, window_size=11, size_average=True, channel=3): super(MSSSIM, self).__init__() self.window_size = window_size self.size_average = size_average self.channel = channel def forward(self, img1, img2): # TODO: store window between calls if possible return msssim(img1, img2, window_size=self.window_size, size_average=self.size_average) class TVLoss(nn.Module): def __init__(self,TVLoss_weight=1): super(TVLoss,self).__init__() self.TVLoss_weight = TVLoss_weight def forward(self,x): batch_size = x.size()[0] h_x = x.size()[2] w_x = x.size()[3] count_h = self._tensor_size(x[:,:,1:,:]) #算出总共求了多少次差 count_w = self._tensor_size(x[:,:,:,1:]) h_tv = torch.pow((x[:,:,1:,:]-x[:,:,:h_x-1,:]),2).sum() # x[:,:,1:,:]-x[:,:,:h_x-1,:]就是对原图进行错位,分成两张像素位置差1的图片,第一张图片 # 从像素点1开始(原图从0开始),到最后一个像素点,第二张图片从像素点0开始,到倒数第二个 # 像素点,这样就实现了对原图进行错位,分成两张图的操作,做差之后就是原图中每个像素点与相 # 邻的下一个像素点的差。 w_tv = torch.pow((x[:,:,:,1:]-x[:,:,:,:w_x-1]),2).sum() return self.TVLoss_weight*2*(h_tv/count_h+w_tv/count_w)/batch_size def _tensor_size(self,t): return t.size()[1]*t.size()[2]*t.size()[3] def _tensor_size(self,t): return t.size()[1]*t.size()[2]*t.size()[3] class ContrastLoss(nn.Module): def __init__(self): super(ContrastLoss, self).__init__() self.l1 = nn.L1Loss() self.model = vgg16(weights = torchvision.models.VGG16_Weights.DEFAULT) self.model = self.model.features[:16].to("cuda" if torch.cuda.is_available() else "cpu") for param in self.model.parameters(): param.requires_grad = False self.layer_name_mapping = { '3': "relu1_2", '8': "relu2_2", '15': "relu3_3" } def gen_features(self, x): output = [] for name, module in self.model._modules.items(): x = module(x) if name in self.layer_name_mapping: output.append(x) return output def forward(self, inp, pos, neg, out): inp_t = inp inp_x0 = self.gen_features(inp_t) pos_t = pos pos_x0 = self.gen_features(pos_t) out_t = out out_x0 = self.gen_features(out_t) neg_t, neg_x0 = [],[] for i in range(neg.shape[1]): neg_i = neg[:,i,:,:] neg_t.append(neg_i) neg_x0_i = self.gen_features(neg_i) neg_x0.append(neg_x0_i) loss = 0 for i in range(len(pos_x0)): pos_term = self.l1(out_x0[i], pos_x0[i].detach()) inp_term = self.l1(out_x0[i], inp_x0[i].detach())/(len(neg_x0)+1) neg_term = sum(self.l1(out_x0[i], neg_x0[j][i].detach()) for j in range(len(neg_x0)))/(len(neg_x0)+1) loss = loss + pos_term / (inp_term+neg_term+1e-7) return loss / len(pos_x0) class Total_loss(nn.Module): def __init__(self, args): super(Total_loss, self).__init__() self.con_loss = ContrastLoss() self.weight_sl1, self.weight_msssim, self.weight_drl = args.loss_weight def forward(self, inp, pos, neg, out): smooth_loss_l1 = F.smooth_l1_loss(out, pos) msssim_loss = 1-msssim(out, pos, normalize=True) c_loss = self.con_loss(inp[0], pos, neg, out) total_loss = self.weight_sl1 * smooth_loss_l1 + self.weight_msssim * msssim_loss + self.weight_drl * c_loss return total_loss