# -*- coding: utf-8 -*- from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("SECode/Gradio/t5-base") model = AutoModel.from_pretrained("SECode/Gradio/t5-base") text = "In terms of time." # Tokenize the text batch = tokenizer.prepare_seq2seq_batch(src_texts=[text]) # Make sure that the tokenized text does not exceed the maximum # allowed size of 512 batch["input_ids"] = batch["input_ids"][:, :512] batch["attention_mask"] = batch["attention_mask"][:, :512] # Perform the translation and decode the output translation = model.generate(**batch) result = tokenizer.batch_decode(translation, skip_special_tokens=True) print(result)