# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: LicenseRef-NvidiaProprietary # # NVIDIA CORPORATION, its affiliates and licensors retain all intellectual # property and proprietary rights in and to this material, related # documentation and any modifications thereto. Any use, reproduction, # disclosure or distribution of this material and related documentation # without an express license agreement from NVIDIA CORPORATION or # its affiliates is strictly prohibited. """Loss functions.""" import numpy as np import torch from torch_utils import training_stats from torch_utils.ops import conv2d_gradfix from torch_utils.ops import upfirdn2d from training.dual_discriminator import filtered_resizing #---------------------------------------------------------------------------- class Loss: def accumulate_gradients(self, phase, real_img, real_c, gen_z, gen_c, gain, cur_nimg): # to be overridden by subclass raise NotImplementedError() #---------------------------------------------------------------------------- class StyleGAN2Loss(Loss): def __init__(self, device, G, D, augment_pipe=None, r1_gamma=10, style_mixing_prob=0, pl_weight=0, pl_batch_shrink=2, pl_decay=0.01, pl_no_weight_grad=False, blur_init_sigma=0, blur_fade_kimg=0, r1_gamma_init=0, r1_gamma_fade_kimg=0, neural_rendering_resolution_initial=64, neural_rendering_resolution_final=None, neural_rendering_resolution_fade_kimg=0, gpc_reg_fade_kimg=1000, gpc_reg_prob=None, dual_discrimination=False, filter_mode='antialiased'): super().__init__() self.device = device self.G = G self.D = D self.augment_pipe = augment_pipe self.r1_gamma = r1_gamma self.style_mixing_prob = style_mixing_prob self.pl_weight = pl_weight self.pl_batch_shrink = pl_batch_shrink self.pl_decay = pl_decay self.pl_no_weight_grad = pl_no_weight_grad self.pl_mean = torch.zeros([], device=device) self.blur_init_sigma = blur_init_sigma self.blur_fade_kimg = blur_fade_kimg self.r1_gamma_init = r1_gamma_init self.r1_gamma_fade_kimg = r1_gamma_fade_kimg self.neural_rendering_resolution_initial = neural_rendering_resolution_initial self.neural_rendering_resolution_final = neural_rendering_resolution_final self.neural_rendering_resolution_fade_kimg = neural_rendering_resolution_fade_kimg self.gpc_reg_fade_kimg = gpc_reg_fade_kimg self.gpc_reg_prob = gpc_reg_prob self.dual_discrimination = dual_discrimination self.filter_mode = filter_mode self.resample_filter = upfirdn2d.setup_filter([1,3,3,1], device=device) self.blur_raw_target = True assert self.gpc_reg_prob is None or (0 <= self.gpc_reg_prob <= 1) def run_G(self, z, c, swapping_prob, neural_rendering_resolution, update_emas=False): if swapping_prob is not None: c_swapped = torch.roll(c.clone(), 1, 0) c_gen_conditioning = torch.where(torch.rand((c.shape[0], 1), device=c.device) < swapping_prob, c_swapped, c) else: c_gen_conditioning = torch.zeros_like(c) ws = self.G.mapping(z, c_gen_conditioning, update_emas=update_emas) if self.style_mixing_prob > 0: with torch.autograd.profiler.record_function('style_mixing'): cutoff = torch.empty([], dtype=torch.int64, device=ws.device).random_(1, ws.shape[1]) cutoff = torch.where(torch.rand([], device=ws.device) < self.style_mixing_prob, cutoff, torch.full_like(cutoff, ws.shape[1])) ws[:, cutoff:] = self.G.mapping(torch.randn_like(z), c, update_emas=False)[:, cutoff:] gen_output = self.G.synthesis(ws, c, neural_rendering_resolution=neural_rendering_resolution, update_emas=update_emas) return gen_output, ws def run_D(self, img, c, blur_sigma=0, blur_sigma_raw=0, update_emas=False): blur_size = np.floor(blur_sigma * 3) if blur_size > 0: with torch.autograd.profiler.record_function('blur'): f = torch.arange(-blur_size, blur_size + 1, device=img['image'].device).div(blur_sigma).square().neg().exp2() img['image'] = upfirdn2d.filter2d(img['image'], f / f.sum()) if self.augment_pipe is not None: augmented_pair = self.augment_pipe(torch.cat([img['image'], torch.nn.functional.interpolate(img['image_raw'], size=img['image'].shape[2:], mode='bilinear', antialias=True)], dim=1)) img['image'] = augmented_pair[:, :img['image'].shape[1]] img['image_raw'] = torch.nn.functional.interpolate(augmented_pair[:, img['image'].shape[1]:], size=img['image_raw'].shape[2:], mode='bilinear', antialias=True) logits = self.D(img, c, update_emas=update_emas) return logits def accumulate_gradients(self, phase, real_img, real_c, gen_z, gen_c, gain, cur_nimg): assert phase in ['Gmain', 'Greg', 'Gboth', 'Dmain', 'Dreg', 'Dboth'] if self.G.rendering_kwargs.get('density_reg', 0) == 0: phase = {'Greg': 'none', 'Gboth': 'Gmain'}.get(phase, phase) if self.r1_gamma == 0: phase = {'Dreg': 'none', 'Dboth': 'Dmain'}.get(phase, phase) blur_sigma = max(1 - cur_nimg / (self.blur_fade_kimg * 1e3), 0) * self.blur_init_sigma if self.blur_fade_kimg > 0 else 0 r1_gamma = self.r1_gamma alpha = min(cur_nimg / (self.gpc_reg_fade_kimg * 1e3), 1) if self.gpc_reg_fade_kimg > 0 else 1 swapping_prob = (1 - alpha) * 1 + alpha * self.gpc_reg_prob if self.gpc_reg_prob is not None else None if self.neural_rendering_resolution_final is not None: alpha = min(cur_nimg / (self.neural_rendering_resolution_fade_kimg * 1e3), 1) neural_rendering_resolution = int(np.rint(self.neural_rendering_resolution_initial * (1 - alpha) + self.neural_rendering_resolution_final * alpha)) else: neural_rendering_resolution = self.neural_rendering_resolution_initial real_img_raw = filtered_resizing(real_img, size=neural_rendering_resolution, f=self.resample_filter, filter_mode=self.filter_mode) if self.blur_raw_target: blur_size = np.floor(blur_sigma * 3) if blur_size > 0: f = torch.arange(-blur_size, blur_size + 1, device=real_img_raw.device).div(blur_sigma).square().neg().exp2() real_img_raw = upfirdn2d.filter2d(real_img_raw, f / f.sum()) real_img = {'image': real_img, 'image_raw': real_img_raw} # Gmain: Maximize logits for generated images. if phase in ['Gmain', 'Gboth']: with torch.autograd.profiler.record_function('Gmain_forward'): gen_img, _gen_ws = self.run_G(gen_z, gen_c, swapping_prob=swapping_prob, neural_rendering_resolution=neural_rendering_resolution) gen_logits = self.run_D(gen_img, gen_c, blur_sigma=blur_sigma) training_stats.report('Loss/scores/fake', gen_logits) training_stats.report('Loss/signs/fake', gen_logits.sign()) loss_Gmain = torch.nn.functional.softplus(-gen_logits) training_stats.report('Loss/G/loss', loss_Gmain) with torch.autograd.profiler.record_function('Gmain_backward'): loss_Gmain.mean().mul(gain).backward() # Density Regularization if phase in ['Greg', 'Gboth'] and self.G.rendering_kwargs.get('density_reg', 0) > 0 and self.G.rendering_kwargs['reg_type'] == 'l1': if swapping_prob is not None: c_swapped = torch.roll(gen_c.clone(), 1, 0) c_gen_conditioning = torch.where(torch.rand([], device=gen_c.device) < swapping_prob, c_swapped, gen_c) else: c_gen_conditioning = torch.zeros_like(gen_c) ws = self.G.mapping(gen_z, c_gen_conditioning, update_emas=False) if self.style_mixing_prob > 0: with torch.autograd.profiler.record_function('style_mixing'): cutoff = torch.empty([], dtype=torch.int64, device=ws.device).random_(1, ws.shape[1]) cutoff = torch.where(torch.rand([], device=ws.device) < self.style_mixing_prob, cutoff, torch.full_like(cutoff, ws.shape[1])) ws[:, cutoff:] = self.G.mapping(torch.randn_like(z), c, update_emas=False)[:, cutoff:] initial_coordinates = torch.rand((ws.shape[0], 1000, 3), device=ws.device) * 2 - 1 perturbed_coordinates = initial_coordinates + torch.randn_like(initial_coordinates) * self.G.rendering_kwargs['density_reg_p_dist'] all_coordinates = torch.cat([initial_coordinates, perturbed_coordinates], dim=1) sigma = self.G.sample_mixed(all_coordinates, torch.randn_like(all_coordinates), ws, update_emas=False)['sigma'] sigma_initial = sigma[:, :sigma.shape[1]//2] sigma_perturbed = sigma[:, sigma.shape[1]//2:] TVloss = torch.nn.functional.l1_loss(sigma_initial, sigma_perturbed) * self.G.rendering_kwargs['density_reg'] TVloss.mul(gain).backward() # Alternative density regularization if phase in ['Greg', 'Gboth'] and self.G.rendering_kwargs.get('density_reg', 0) > 0 and self.G.rendering_kwargs['reg_type'] == 'monotonic-detach': if swapping_prob is not None: c_swapped = torch.roll(gen_c.clone(), 1, 0) c_gen_conditioning = torch.where(torch.rand([], device=gen_c.device) < swapping_prob, c_swapped, gen_c) else: c_gen_conditioning = torch.zeros_like(gen_c) ws = self.G.mapping(gen_z, c_gen_conditioning, update_emas=False) initial_coordinates = torch.rand((ws.shape[0], 2000, 3), device=ws.device) * 2 - 1 # Front perturbed_coordinates = initial_coordinates + torch.tensor([0, 0, -1], device=ws.device) * (1/256) * self.G.rendering_kwargs['box_warp'] # Behind all_coordinates = torch.cat([initial_coordinates, perturbed_coordinates], dim=1) sigma = self.G.sample_mixed(all_coordinates, torch.randn_like(all_coordinates), ws, update_emas=False)['sigma'] sigma_initial = sigma[:, :sigma.shape[1]//2] sigma_perturbed = sigma[:, sigma.shape[1]//2:] monotonic_loss = torch.relu(sigma_initial.detach() - sigma_perturbed).mean() * 10 monotonic_loss.mul(gain).backward() if swapping_prob is not None: c_swapped = torch.roll(gen_c.clone(), 1, 0) c_gen_conditioning = torch.where(torch.rand([], device=gen_c.device) < swapping_prob, c_swapped, gen_c) else: c_gen_conditioning = torch.zeros_like(gen_c) ws = self.G.mapping(gen_z, c_gen_conditioning, update_emas=False) if self.style_mixing_prob > 0: with torch.autograd.profiler.record_function('style_mixing'): cutoff = torch.empty([], dtype=torch.int64, device=ws.device).random_(1, ws.shape[1]) cutoff = torch.where(torch.rand([], device=ws.device) < self.style_mixing_prob, cutoff, torch.full_like(cutoff, ws.shape[1])) ws[:, cutoff:] = self.G.mapping(torch.randn_like(z), c, update_emas=False)[:, cutoff:] initial_coordinates = torch.rand((ws.shape[0], 1000, 3), device=ws.device) * 2 - 1 perturbed_coordinates = initial_coordinates + torch.randn_like(initial_coordinates) * (1/256) * self.G.rendering_kwargs['box_warp'] all_coordinates = torch.cat([initial_coordinates, perturbed_coordinates], dim=1) sigma = self.G.sample_mixed(all_coordinates, torch.randn_like(all_coordinates), ws, update_emas=False)['sigma'] sigma_initial = sigma[:, :sigma.shape[1]//2] sigma_perturbed = sigma[:, sigma.shape[1]//2:] TVloss = torch.nn.functional.l1_loss(sigma_initial, sigma_perturbed) * self.G.rendering_kwargs['density_reg'] TVloss.mul(gain).backward() # Alternative density regularization if phase in ['Greg', 'Gboth'] and self.G.rendering_kwargs.get('density_reg', 0) > 0 and self.G.rendering_kwargs['reg_type'] == 'monotonic-fixed': if swapping_prob is not None: c_swapped = torch.roll(gen_c.clone(), 1, 0) c_gen_conditioning = torch.where(torch.rand([], device=gen_c.device) < swapping_prob, c_swapped, gen_c) else: c_gen_conditioning = torch.zeros_like(gen_c) ws = self.G.mapping(gen_z, c_gen_conditioning, update_emas=False) initial_coordinates = torch.rand((ws.shape[0], 2000, 3), device=ws.device) * 2 - 1 # Front perturbed_coordinates = initial_coordinates + torch.tensor([0, 0, -1], device=ws.device) * (1/256) * self.G.rendering_kwargs['box_warp'] # Behind all_coordinates = torch.cat([initial_coordinates, perturbed_coordinates], dim=1) sigma = self.G.sample_mixed(all_coordinates, torch.randn_like(all_coordinates), ws, update_emas=False)['sigma'] sigma_initial = sigma[:, :sigma.shape[1]//2] sigma_perturbed = sigma[:, sigma.shape[1]//2:] monotonic_loss = torch.relu(sigma_initial - sigma_perturbed).mean() * 10 monotonic_loss.mul(gain).backward() if swapping_prob is not None: c_swapped = torch.roll(gen_c.clone(), 1, 0) c_gen_conditioning = torch.where(torch.rand([], device=gen_c.device) < swapping_prob, c_swapped, gen_c) else: c_gen_conditioning = torch.zeros_like(gen_c) ws = self.G.mapping(gen_z, c_gen_conditioning, update_emas=False) if self.style_mixing_prob > 0: with torch.autograd.profiler.record_function('style_mixing'): cutoff = torch.empty([], dtype=torch.int64, device=ws.device).random_(1, ws.shape[1]) cutoff = torch.where(torch.rand([], device=ws.device) < self.style_mixing_prob, cutoff, torch.full_like(cutoff, ws.shape[1])) ws[:, cutoff:] = self.G.mapping(torch.randn_like(z), c, update_emas=False)[:, cutoff:] initial_coordinates = torch.rand((ws.shape[0], 1000, 3), device=ws.device) * 2 - 1 perturbed_coordinates = initial_coordinates + torch.randn_like(initial_coordinates) * (1/256) * self.G.rendering_kwargs['box_warp'] all_coordinates = torch.cat([initial_coordinates, perturbed_coordinates], dim=1) sigma = self.G.sample_mixed(all_coordinates, torch.randn_like(all_coordinates), ws, update_emas=False)['sigma'] sigma_initial = sigma[:, :sigma.shape[1]//2] sigma_perturbed = sigma[:, sigma.shape[1]//2:] TVloss = torch.nn.functional.l1_loss(sigma_initial, sigma_perturbed) * self.G.rendering_kwargs['density_reg'] TVloss.mul(gain).backward() # Dmain: Minimize logits for generated images. loss_Dgen = 0 if phase in ['Dmain', 'Dboth']: with torch.autograd.profiler.record_function('Dgen_forward'): gen_img, _gen_ws = self.run_G(gen_z, gen_c, swapping_prob=swapping_prob, neural_rendering_resolution=neural_rendering_resolution, update_emas=True) gen_logits = self.run_D(gen_img, gen_c, blur_sigma=blur_sigma, update_emas=True) training_stats.report('Loss/scores/fake', gen_logits) training_stats.report('Loss/signs/fake', gen_logits.sign()) loss_Dgen = torch.nn.functional.softplus(gen_logits) with torch.autograd.profiler.record_function('Dgen_backward'): loss_Dgen.mean().mul(gain).backward() # Dmain: Maximize logits for real images. # Dr1: Apply R1 regularization. if phase in ['Dmain', 'Dreg', 'Dboth']: name = 'Dreal' if phase == 'Dmain' else 'Dr1' if phase == 'Dreg' else 'Dreal_Dr1' with torch.autograd.profiler.record_function(name + '_forward'): real_img_tmp_image = real_img['image'].detach().requires_grad_(phase in ['Dreg', 'Dboth']) real_img_tmp_image_raw = real_img['image_raw'].detach().requires_grad_(phase in ['Dreg', 'Dboth']) real_img_tmp = {'image': real_img_tmp_image, 'image_raw': real_img_tmp_image_raw} real_logits = self.run_D(real_img_tmp, real_c, blur_sigma=blur_sigma) training_stats.report('Loss/scores/real', real_logits) training_stats.report('Loss/signs/real', real_logits.sign()) loss_Dreal = 0 if phase in ['Dmain', 'Dboth']: loss_Dreal = torch.nn.functional.softplus(-real_logits) training_stats.report('Loss/D/loss', loss_Dgen + loss_Dreal) loss_Dr1 = 0 if phase in ['Dreg', 'Dboth']: if self.dual_discrimination: with torch.autograd.profiler.record_function('r1_grads'), conv2d_gradfix.no_weight_gradients(): r1_grads = torch.autograd.grad(outputs=[real_logits.sum()], inputs=[real_img_tmp['image'], real_img_tmp['image_raw']], create_graph=True, only_inputs=True) r1_grads_image = r1_grads[0] r1_grads_image_raw = r1_grads[1] r1_penalty = r1_grads_image.square().sum([1,2,3]) + r1_grads_image_raw.square().sum([1,2,3]) else: # single discrimination with torch.autograd.profiler.record_function('r1_grads'), conv2d_gradfix.no_weight_gradients(): r1_grads = torch.autograd.grad(outputs=[real_logits.sum()], inputs=[real_img_tmp['image']], create_graph=True, only_inputs=True) r1_grads_image = r1_grads[0] r1_penalty = r1_grads_image.square().sum([1,2,3]) loss_Dr1 = r1_penalty * (r1_gamma / 2) training_stats.report('Loss/r1_penalty', r1_penalty) training_stats.report('Loss/D/reg', loss_Dr1) with torch.autograd.profiler.record_function(name + '_backward'): (loss_Dreal + loss_Dr1).mean().mul(gain).backward() #----------------------------------------------------------------------------