import gradio as gr import random import matplotlib import matplotlib.pyplot as plt import pandas as pd import shap import lightgbm as lgb import yaml import numpy as np import os from visualisations import terravisualisation as tmvis matplotlib.use("Agg") bontiledict = {'SPD + 2C':'BON1', 'cult + 4C':'BON2', '+6C':'BON3', '+3pw 1 ship':'BON4', '+1W + 3PW':'BON5', 'pass-vp:SA/SH*4 + 2W':'BON6', 'pass-vp:TP*2 + 1W':'BON7', '+1P':'BON8', 'pass-vp:D*1 + 2C':'BON9', 'pass-vp: ship*3 + 3pw':'BON10' } bontiledict_reverse = {'BON1': 'SPD + 2C', 'BON2': 'cult + 4C', 'BON3': '+6C', 'BON4': '+3pw 1 ship', 'BON5': '+1W + 3PW', 'BON6': 'pass-vp:SA/SH*4 + 2W', 'BON7': 'pass-vp:TP*2 + 1W', 'BON8': '+1P', 'BON9': 'pass-vp:D*1 + 2C', 'BON10': 'pass-vp: ship*3 + 3pw' } round_tiles_dict = {'SPADE >> 2':'SCORE1', 'TOWN >> 5':'SCORE2', 'D >> 2':'SCORE3', 'SA/SH >> 5':'SCORE4', 'D >> 2':'SCORE5', 'TP >> 3':'SCORE6', 'SA/SH >> 5':'SCORE7', 'TP >> 3':'SCORE8', 'TE >> 4':'SCORE9'} round_tiles_dict_reverse = {'SCORE1': 'SPADE >> 2', 'SCORE2': 'TOWN >> 5', 'SCORE3': 'D >> 2', 'SCORE4': 'SA/SH >> 5', 'SCORE5': 'D >> 2', 'SCORE6': 'TP >> 3', 'SCORE7': 'SA/SH >> 5', 'SCORE8': 'TP >> 3', 'SCORE9': 'TE >> 4'} round_tiles = list(round_tiles_dict.keys()) round6_tiles = round_tiles.copy() round6_tiles.remove('SPADE >> 2') bontiles = list(bontiledict.keys()) factions = ['Witches', 'Auren', 'Giants', 'Chaos Magicians', 'Darklings', 'Alchemists', 'Swarmlings', 'Mermaids', 'Fakirs', 'Nomads', 'Engineers', 'Dwarves', 'Halflings', 'Cultists'] players = ['2players', '3players', '4players', '5players'] maps = ['map1', 'map2', 'map3'] faction_cols = ['Yellow', 'Red', 'Grey', 'Black', 'Blue', 'Green', 'Brown'] with open('params.yaml', 'r') as fd: params = yaml.safe_load(fd) vpdfdir = params['prepare']['vp-data-dir'] featdfdir = params['prepare']['feature-data-dir'] pickledir = params['prepare-step2']['pickle-dir'] feature_columns = ['x0_SCORE1', 'x0_SCORE2', 'x0_SCORE3', 'x0_SCORE4', 'x0_SCORE5', 'x0_SCORE6', 'x0_SCORE7', 'x0_SCORE8', 'x0_SCORE9', 'x1_SCORE1', 'x1_SCORE2', 'x1_SCORE3', 'x1_SCORE4', 'x1_SCORE5', 'x1_SCORE6', 'x1_SCORE7', 'x1_SCORE8', 'x1_SCORE9', 'x2_SCORE1', 'x2_SCORE2', 'x2_SCORE3', 'x2_SCORE4', 'x2_SCORE5', 'x2_SCORE6', 'x2_SCORE7', 'x2_SCORE8', 'x2_SCORE9', 'x3_SCORE1', 'x3_SCORE2', 'x3_SCORE3', 'x3_SCORE4', 'x3_SCORE5', 'x3_SCORE6', 'x3_SCORE7', 'x3_SCORE8', 'x3_SCORE9', 'x4_SCORE1', 'x4_SCORE2', 'x4_SCORE3', 'x4_SCORE4', 'x4_SCORE5', 'x4_SCORE6', 'x4_SCORE7', 'x4_SCORE8', 'x4_SCORE9', 'x5_SCORE2', 'x5_SCORE3', 'x5_SCORE4', 'x5_SCORE5', 'x5_SCORE6', 'x5_SCORE7', 'x5_SCORE8', 'x5_SCORE9', 'BON1', 'BON2', 'BON3', 'BON4', 'BON5', 'BON6', 'BON7', 'BON8', 'BON9', 'BON10', 'no_players', 'red', 'blue', 'green', 'black', 'grey', 'yellow', 'brown', 'x0_map1', 'x0_map2', 'x0_map3'] def args_to_features(*args): # round1, round2, round3, round4, round5, round6, faction, map, playerschosen, bon_tiles, fac_cols = args Xdata = pd.DataFrame(data=np.zeros((1, len(feature_columns))), columns=feature_columns) for arg_no, user_input in enumerate(args): if arg_no in range(6): # if it's a round # map back to col name feat_label_name = f'x{arg_no}_{round_tiles_dict[user_input]}' Xdata[feat_label_name].iloc[0] = 1 elif arg_no == 6: faction = user_input if faction == 'Chaos Magicians': faction = 'chaosmagicians' elif arg_no == 7: # map feat_label_name = f'x0_{user_input}' Xdata[feat_label_name].iloc[0] = 1 elif arg_no == 8: # playerschosen Xdata['no_players'].iloc[0] = int(user_input[0]) elif arg_no == 9: # bon_tiles for bon_tile in user_input: Xdata[bontiledict[bon_tile]].iloc[0] = 1 elif arg_no == 9: # fac_cols for fac_col in user_input: Xdata[fac_col.lower()].iloc[0] = 1 return Xdata, faction def display_map(faction, map): map_fig = plt.figure(tight_layout=True) x, y = tmvis.display_map(faction, plot=False) a = map_fig.add_subplot(111) a.hexbin(x, y, gridsize=(19, 9), cmap='magma') a.axis('off') return map_fig def predict(*args): Xdata, faction = args_to_features(*args) modelfile = f'{os.getcwd()}/data/faction-picker-bot/models/{faction.lower()}_model.txt' bst = lgb.Booster(model_file=modelfile) return f'Final score: {round(bst.predict(Xdata)[0])}' def interpret(*args): Xdata, faction = args_to_features(*args) modelfile = f'{os.getcwd()}/data/faction-picker-bot/models/{faction.lower()}_model.txt' bst = lgb.Booster(model_file=modelfile) bst.params["objective"] = "regression" explainer = shap.Explainer(bst) copycols = [] for ii, column in enumerate(Xdata.columns): if column[-6:] in round_tiles_dict_reverse.keys(): copycols.append(column[:3] + round_tiles_dict_reverse[column[-6:]]) elif column in bontiledict_reverse.keys(): copycols.append(bontiledict_reverse[column]) else: copycols.append(column) Xdata.columns = copycols shap_values = explainer(Xdata) fig_m = plt.figure(tight_layout=True, facecolor=(0.125,0.172,0.203)) ax = plt.gca() ax.set_facecolor((0.125,0.172,0.203)) matplotlib.rcParams['axes.labelcolor'] = 'w' shap.plots.waterfall(shap_values[0]) # shap.initjs() # shap.plots.force(shap_values[0]) return fig_m with gr.Blocks() as demo: gr.Markdown(""" **Predict final faction score given the initial board setup 💰**: This model uses an lightgbm regression to make prediction. The [source code for this work is here](https://github.com/guyreading/terrabot/blob/main/app.py). """) with gr.Row(): with gr.Column(): faction = gr.Dropdown( label="Faction", choices=factions, value=lambda: random.choice(factions), ) round1_tile = gr.Dropdown( label="Round 1 tile", choices=round_tiles, value=lambda: random.choice(round_tiles), ) round2_tile = gr.Dropdown( label="Round 2 tile", choices=round_tiles, value=lambda: random.choice(round_tiles), ) round3_tile = gr.Dropdown( label="Round 3 tile", choices=round_tiles, value=lambda: random.choice(round_tiles), ) round4_tile = gr.Dropdown( label="Round 4 tile", choices=round_tiles, value=lambda: random.choice(round_tiles), ) round5_tile = gr.Dropdown( label="Round 5 tile", choices=round_tiles, value=lambda: random.choice(round_tiles), ) round6_tile = gr.Dropdown( label="Round 6 tile", choices=round6_tiles, value=lambda: random.choice(round6_tiles), ) bon_tiles_gr = gr.CheckboxGroup(label='Bonus tiles present', choices=list(bontiledict.keys())) map = gr.Dropdown( label="Map", choices=maps, value=lambda: random.choice(maps), ) playerschosen = gr.Dropdown( label="No. Of Players", choices=players, value=lambda: random.choice(players), ) fac_cols_gr = gr.CheckboxGroup(label='Other faction colours present', choices=faction_cols) with gr.Column(): map_plot = gr.Plot(label='Distance from home terrain: darker is further') with gr.Row(): predict_btn = gr.Button(value="Predict") interpret_btn = gr.Button(value="Explain") label = gr.Label(label=f'Prediction of final VP for faction:') plot = gr.Plot(label=f'Breakdown of prediction for faction:') predict_btn.click( predict, inputs=[ round1_tile, round2_tile, round3_tile, round4_tile, round5_tile, round6_tile, faction, map, playerschosen, bon_tiles_gr, fac_cols_gr ], outputs=[label], ) interpret_btn.click( interpret, inputs=[ round1_tile, round2_tile, round3_tile, round4_tile, round5_tile, round6_tile, faction, map, playerschosen, bon_tiles_gr, fac_cols_gr ], outputs=[plot], ) faction.change( display_map, inputs=[ faction, map, ], outputs=[map_plot], ) map.change( display_map, inputs=[ faction, map, ], outputs=[map_plot], ) demo.launch()