import gradio as gr from fastai.vision.all import * # print versions import sys import torch import fastai # print("Python:", sys.version) # print("PyTorch:", torch.__version__) # print("Fastai:", fastai.__version__) # load learner import warnings warnings.filterwarnings("ignore") learn = load_learner('model-fastai-v2.8.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title = "Chihuahua vs Biscuit" description = "Check if image is Chihuahua or Biscuit" article="it was a joke with Dmitry when we started learn machine learning" examples = ['chihuahua.jpg', 'biscuit.jpg'] demo = gr.Interface( fn=predict, inputs=gr.Image(type="pil"), outputs=gr.Label(num_top_classes=3), title=title, description=description, article=article, examples=examples) demo.launch(server_name="0.0.0.0", server_port=7860, share=True)