from __future__ import division import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable import numpy as np import cv2 import boto3 from io import BytesIO def get_data_s3(filename): ACCESS_KEY = "AKIAUKUH7S3OIVOEIRWY" SECRET_KEY = "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" bucket = "root-models" s3 = boto3.client( "s3" , aws_access_key_id=ACCESS_KEY , aws_secret_access_key=SECRET_KEY ) response = s3.get_object(Bucket=bucket, Key=filename) data = BytesIO( response["Body"].read() ) return data def parse_cfg_url(filename='yolov3.cfg'): data = get_data_s3(filename) lines = data.getvalue().decode().rstrip().lstrip().split('\n') #store the lines in a list lines = [x.rstrip().lstrip() for x in lines] lines = [x for x in lines if len(x) > 0] #get read of the empty lines lines = [x for x in lines if x[0] != '#'] lines = [x.rstrip().lstrip() for x in lines] block = {} blocks = [] for line in lines: # print('line:' , line) if line[0] == "[": #This marks the start of a new block if len(block) != 0: blocks.append(block) block = {} block["type"] = line[1:-1].rstrip() else: key,value = line.split("=") block[key.rstrip()] = value.lstrip() blocks.append(block) # print('blocks : 2 ' , blocks ) return blocks def predict_transform(prediction, inp_dim, anchors, num_classes, CUDA = True): batch_size = prediction.size(0) stride = inp_dim // prediction.size(2) grid_size = inp_dim // stride bbox_attrs = 5 + num_classes num_anchors = len(anchors) anchors = [(a[0]/stride, a[1]/stride) for a in anchors] prediction = prediction.view(batch_size, bbox_attrs*num_anchors, grid_size*grid_size) prediction = prediction.transpose(1,2).contiguous() prediction = prediction.view(batch_size, grid_size*grid_size*num_anchors, bbox_attrs) #Sigmoid the centre_X, centre_Y. and object confidencce prediction[:,:,0] = torch.sigmoid(prediction[:,:,0]) prediction[:,:,1] = torch.sigmoid(prediction[:,:,1]) prediction[:,:,4] = torch.sigmoid(prediction[:,:,4]) #Add the center offsets grid_len = np.arange(grid_size) a,b = np.meshgrid(grid_len, grid_len) x_offset = torch.FloatTensor(a).view(-1,1) y_offset = torch.FloatTensor(b).view(-1,1) if CUDA: x_offset = x_offset.cuda() y_offset = y_offset.cuda() x_y_offset = torch.cat((x_offset, y_offset), 1).repeat(1,num_anchors).view(-1,2).unsqueeze(0) prediction[:,:,:2] += x_y_offset #log space transform height and the width anchors = torch.FloatTensor(anchors) if CUDA: anchors = anchors.cuda() anchors = anchors.repeat(grid_size*grid_size, 1).unsqueeze(0) prediction[:,:,2:4] = torch.exp(prediction[:,:,2:4])*anchors #Softmax the class scores prediction[:,:,5: 5 + num_classes] = torch.sigmoid((prediction[:,:, 5 : 5 + num_classes])) prediction[:,:,:4] *= stride return prediction def write_results(prediction, confidence, num_classes, nms = True, nms_conf = 0.4): conf_mask = (prediction[:,:,4] > confidence).float().unsqueeze(2) prediction = prediction*conf_mask try: ind_nz = torch.nonzero(prediction[:,:,4]).transpose(0,1).contiguous() except: return 0 box_a = prediction.new(prediction.shape) box_a[:,:,0] = (prediction[:,:,0] - prediction[:,:,2]/2) box_a[:,:,1] = (prediction[:,:,1] - prediction[:,:,3]/2) box_a[:,:,2] = (prediction[:,:,0] + prediction[:,:,2]/2) box_a[:,:,3] = (prediction[:,:,1] + prediction[:,:,3]/2) prediction[:,:,:4] = box_a[:,:,:4] batch_size = prediction.size(0) output = prediction.new(1, prediction.size(2) + 1) write = False for ind in range(batch_size): #select the image from the batch image_pred = prediction[ind] #Get the class having maximum score, and the index of that class #Get rid of num_classes softmax scores #Add the class index and the class score of class having maximum score max_conf, max_conf_score = torch.max(image_pred[:,5:5+ num_classes], 1) max_conf = max_conf.float().unsqueeze(1) max_conf_score = max_conf_score.float().unsqueeze(1) seq = (image_pred[:,:5], max_conf, max_conf_score) image_pred = torch.cat(seq, 1) #Get rid of the zero entries non_zero_ind = (torch.nonzero(image_pred[:,4])) image_pred_ = image_pred[non_zero_ind.squeeze(),:].view(-1,7) #Get the various classes detected in the image try: img_classes = unique(image_pred_[:,-1]) except: continue #WE will do NMS classwise for cls in img_classes: #get the detections with one particular class cls_mask = image_pred_*(image_pred_[:,-1] == cls).float().unsqueeze(1) class_mask_ind = torch.nonzero(cls_mask[:,-2]).squeeze() image_pred_class = image_pred_[class_mask_ind].view(-1,7) #sort the detections such that the entry with the maximum objectness #confidence is at the top conf_sort_index = torch.sort(image_pred_class[:,4], descending = True )[1] image_pred_class = image_pred_class[conf_sort_index] idx = image_pred_class.size(0) #if nms has to be done if nms: #For each detection for i in range(idx): #Get the IOUs of all boxes that come after the one we are looking at #in the loop try: ious = bbox_iou(image_pred_class[i].unsqueeze(0), image_pred_class[i+1:]) except ValueError: break except IndexError: break #Zero out all the detections that have IoU > treshhold iou_mask = (ious < nms_conf).float().unsqueeze(1) image_pred_class[i+1:] *= iou_mask #Remove the non-zero entries non_zero_ind = torch.nonzero(image_pred_class[:,4]).squeeze() image_pred_class = image_pred_class[non_zero_ind].view(-1,7) #Concatenate the batch_id of the image to the detection #this helps us identify which image does the detection correspond to #We use a linear straucture to hold ALL the detections from the batch #the batch_dim is flattened #batch is identified by extra batch column batch_ind = image_pred_class.new(image_pred_class.size(0), 1).fill_(ind) seq = batch_ind, image_pred_class if not write: output = torch.cat(seq,1) write = True else: out = torch.cat(seq,1) output = torch.cat((output,out)) try: return output except: return 0 def unique(tensor): tensor_np = tensor.cpu().numpy() unique_np = np.unique(tensor_np) unique_tensor = torch.from_numpy(unique_np) tensor_res = tensor.new(unique_tensor.shape) tensor_res.copy_(unique_tensor) return tensor_res def load_classes_url(namesfile): fp = get_data_s3(namesfile) names = fp.getvalue().decode().split("\n")[:-1] return names def load_classes(namesfile): fp = open(namesfile, "r") names = fp.read().split("\n")[:-1] return names def bbox_iou(box1, box2): """ Returns the IoU of two bounding boxes """ #Get the coordinates of bounding boxes b1_x1, b1_y1, b1_x2, b1_y2 = box1[:,0], box1[:,1], box1[:,2], box1[:,3] b2_x1, b2_y1, b2_x2, b2_y2 = box2[:,0], box2[:,1], box2[:,2], box2[:,3] #get the corrdinates of the intersection rectangle inter_rect_x1 = torch.max(b1_x1, b2_x1) inter_rect_y1 = torch.max(b1_y1, b2_y1) inter_rect_x2 = torch.min(b1_x2, b2_x2) inter_rect_y2 = torch.min(b1_y2, b2_y2) #Intersection area if torch.cuda.is_available(): inter_area = torch.max(inter_rect_x2 - inter_rect_x1 + 1,torch.zeros(inter_rect_x2.shape).cuda())*torch.max(inter_rect_y2 - inter_rect_y1 + 1, torch.zeros(inter_rect_x2.shape).cuda()) else: inter_area = torch.max(inter_rect_x2 - inter_rect_x1 + 1,torch.zeros(inter_rect_x2.shape))*torch.max(inter_rect_y2 - inter_rect_y1 + 1, torch.zeros(inter_rect_x2.shape)) #Union Area b1_area = (b1_x2 - b1_x1 + 1)*(b1_y2 - b1_y1 + 1) b2_area = (b2_x2 - b2_x1 + 1)*(b2_y2 - b2_y1 + 1) iou = inter_area / (b1_area + b2_area - inter_area) return iou def letterbox_image(img, inp_dim): '''resize image with unchanged aspect ratio using padding''' img_w, img_h = img.shape[1], img.shape[0] w, h = inp_dim new_w = int(img_w * min(w/img_w, h/img_h)) new_h = int(img_h * min(w/img_w, h/img_h)) resized_image = cv2.resize(img, (new_w,new_h), interpolation = cv2.INTER_CUBIC) canvas = np.full((inp_dim[1], inp_dim[0], 3), 128) canvas[(h-new_h)//2:(h-new_h)//2 + new_h,(w-new_w)//2:(w-new_w)//2 + new_w, :] = resized_image return canvas def prep_image_org(orig_im, inp_dim): """ Prepare image for inputting to the neural network. Returns a Variable """ # orig_im = cv2.imread(img) dim = orig_im.shape[1], orig_im.shape[0] img = (letterbox_image(orig_im, (inp_dim, inp_dim))) img_ = img[:,:,::-1].transpose((2,0,1)).copy() img_ = torch.from_numpy(img_).float().div(255.0).unsqueeze(0) return img_, orig_im, dim def prep_image(img, inp_dim): """ Prepare image for inputting to the neural network. Returns a Variable """ orig_im = cv2.imread(img) dim = orig_im.shape[1], orig_im.shape[0] img = (letterbox_image(orig_im, (inp_dim, inp_dim))) img_ = img[:,:,::-1].transpose((2,0,1)).copy() img_ = torch.from_numpy(img_).float().div(255.0).unsqueeze(0) return img_, orig_im, dim