import torch import os from transformers import AutoModelForCausalLM, GemmaTokenizerFast, TextIteratorStreamer, AutoTokenizer from interface import GemmaLLMInterface from llama_index.core.node_parser import SentenceSplitter from llama_index.embeddings.instructor import InstructorEmbedding import gradio as gr from llama_index.core import Settings, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, PromptTemplate, load_index_from_storage, StorageContext from llama_index.core.node_parser import SentenceSplitter import spaces from huggingface_hub import login from llama_index.core.memory import ChatMemoryBuffer from typing import Iterator, List, Any from llama_index.core.chat_engine import CondensePlusContextChatEngine from llama_index.core.llms import ChatMessage, MessageRole , CompletionResponse from IPython.display import Markdown, display import keras import keras_nlp #from langchain.embeddings.huggingface import HuggingFaceEmbeddings #from llama_index import LangchainEmbedding, ServiceContext # Set the backbend before importing Keras #os.environ["KERAS_BACKEND"] = "jax" # Avoid memory fragmentation on JAX backend. #os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"] = "1.00" #os.getenv("KAGGLE_USERNAME") #os.getenv["KAGGLE_KEY"] """huggingface_token = os.getenv("HUGGINGFACE_TOKEN") login(huggingface_token) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")""" # Let's load Gemma using Keras gemma_model_id = "gemma2_instruct_2b_en" gemma = keras_nlp.models.GemmaCausalLM.from_preset(gemma_model_id) # what models will be used by LlamaIndex: Settings.embed_model = InstructorEmbedding(model_name="hkunlp/instructor-base") #Settings.embed_model = LangchainEmbedding(HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2')) #Settings.llm = GemmaLLMInterface() Settings.llm = GemmaLLMInterface(model=gemma) documents_paths = { 'blockchain': 'data/blockchainprova.txt', 'metaverse': 'data/metaverseprova.txt', 'payment': 'data/paymentprova.txt' } global session_state session_state = {"index": False, "documents_loaded": False, "document_db": None, "original_message": None, "clarification": False} PERSIST_DIR = "./db" os.makedirs(PERSIST_DIR, exist_ok=True) ISTR = "In italiano, chiedi molto brevemente se la domanda si riferisce agli 'Osservatori Blockchain', 'Osservatori Payment' oppure 'Osservatori Metaverse'." ############################--------------------------------- # Get the parser parser = SentenceSplitter.from_defaults( chunk_size=256, chunk_overlap=64, paragraph_separator="\n\n" ) def build_index(path: str): # Load documents from a file documents = SimpleDirectoryReader(input_files=[path]).load_data() # Parse the documents into nodes nodes = parser.get_nodes_from_documents(documents) # Build the vector store index from the nodes index = VectorStoreIndex(nodes) #storage_context = StorageContext.from_defaults() #index.storage_context.persist(persist_dir=PERSIST_DIR) return index # define prompt viewing function def display_prompt_dict(prompts_dict): for k, p in prompts_dict.items(): text_md = f"**Prompt Key**: {k}
" f"**Text:**
" display(Markdown(text_md)) print(p.get_template()) display(Markdown("

")) @spaces.GPU(duration=15) def handle_query(query_str: str, chat_history: list[tuple[str, str]]) -> Iterator[str]: index= build_index("data/blockchainprova.txt") conversation: List[ChatMessage] = [] for user, assistant in chat_history: conversation.extend([ ChatMessage(role=MessageRole.USER, content=user), ChatMessage(role=MessageRole.ASSISTANT, content=assistant), ] ) try: memory = ChatMemoryBuffer.from_defaults(token_limit=1500) """chat_engine = index.as_chat_engine( chat_mode="condense_plus_context", memory=memory, similarity_top_k=3, response_mode= "tree_summarize", #Good for summarization purposes context_prompt = ( "Sei un assistente Q&A italiano di nome Odi, che risponde solo alle domande o richieste pertinenti in modo preciso." " Quando un utente ti chiede informazioni su di te o sul tuo creatore puoi dire che sei un assistente ricercatore creato dagli Osservatori Digitali e fornire gli argomenti di cui sei esperto." " Ecco i documenti rilevanti per il contesto:\n" "{context_str}" "\nIstruzione: Usa la cronologia della chat, o il contesto sopra, per interagire e aiutare l'utente a rispondere alla sua domanda." ), verbose=False, )""" chat_engine = index.as_chat_engine( chat_mode="context", similarity_top_k=3, memory=memory, system_prompt=( "Sei un assistente Q&A italiano di nome Odi, che risponde solo alle domande o richieste pertinenti in modo preciso." " Usa la cronologia della chat, o il contesto fornito, per interagire e aiutare l'utente a rispondere alla sua domanda." ), ) """retriever = index.as_retriever(similarity_top_k=3) # Let's test it out relevant_chunks = relevant_chunks = retriever.retrieve(query_str) print(f"Found: {len(relevant_chunks)} relevant chunks") for idx, chunk in enumerate(relevant_chunks): info_message += f"{idx + 1}) {chunk.text[:64]}...\n" print(info_message) gr.Info(info_message)""" #chat_engine.reset() outputs = [] #response = query_engine.query(query_str) response = chat_engine.stream_chat(query_str, chat_history=conversation) sources = [] # Use a list to collect multiple sources if present #response = chat_engine.chat(query_str) for token in response.response_gen: if token.startswith("assistant:"): # Remove the "assistant:" prefix outputs.append(token[len("assistant:"):]) print(f"Generated token: {token}") yield "".join(outputs) #yield CompletionResponse(text=''.join(outputs), delta=token) """if sources: sources_str = ", ".join(sources) outputs.append(f"Fonti utilizzate: {sources_str}") else: outputs.append("Nessuna fonte specifica utilizzata.") yield "".join(outputs)""" except Exception as e: yield f"Error processing query: {str(e)}"