fountai's picture
push
fca8815
raw
history blame
1.76 kB
import cv2
import numpy as np
import onnxruntime as ort
from huggingface_hub import hf_hub_download
from .onnxdet import inference_detector
from .onnxpose import inference_pose
class Wholebody:
def __init__(self, device="cuda:0"):
providers = ['CPUExecutionProvider'] if device == 'cpu' else ['CUDAExecutionProvider']
onnx_det = hf_hub_download("yzd-v/DWPose", "yolox_l.onnx")
onnx_pose = hf_hub_download("yzd-v/DWPose", "dw-ll_ucoco_384.onnx")
self.session_det = ort.InferenceSession(path_or_bytes=onnx_det, providers=providers)
self.session_pose = ort.InferenceSession(path_or_bytes=onnx_pose, providers=providers)
def __call__(self, oriImg):
det_result = inference_detector(self.session_det, oriImg)
keypoints, scores = inference_pose(self.session_pose, det_result, oriImg)
keypoints_info = np.concatenate(
(keypoints, scores[..., None]), axis=-1)
# compute neck joint
neck = np.mean(keypoints_info[:, [5, 6]], axis=1)
# neck score when visualizing pred
neck[:, 2:4] = np.logical_and(
keypoints_info[:, 5, 2:4] > 0.3,
keypoints_info[:, 6, 2:4] > 0.3).astype(int)
new_keypoints_info = np.insert(
keypoints_info, 17, neck, axis=1)
mmpose_idx = [
17, 6, 8, 10, 7, 9, 12, 14, 16, 13, 15, 2, 1, 4, 3
]
openpose_idx = [
1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17
]
new_keypoints_info[:, openpose_idx] = \
new_keypoints_info[:, mmpose_idx]
keypoints_info = new_keypoints_info
keypoints, scores = keypoints_info[
..., :2], keypoints_info[..., 2]
return keypoints, scores