# download model import modules.hf as hf # load models import models.voice as voice import models.whisper as whisper voice.load() voice.loadVoc() #libs import modules.register as register from models.censor import Wash import requests import os def download_audio(url, output_file): """ Downloads an audio file from the given URL and saves it locally. If the file already exists, it returns the path without downloading again. :param url: URL of the audio file :param output_file: Path where the audio will be saved :return: Path to the audio file """ if os.path.exists(output_file): print(f"File already exists: {output_file}") return output_file try: response = requests.get(url, stream=True) response.raise_for_status() # Raise an HTTPError for bad responses (4xx and 5xx) with open(output_file, 'wb') as file: for chunk in response.iter_content(chunk_size=8192): file.write(chunk) print(f"Audio downloaded successfully: {output_file}") return output_file except requests.exceptions.RequestException as e: print(f"Error downloading audio: {e}") return None # generate audio function censorModel = Wash() def generate_audio(key, text, censor=False, offset=0, speed=0.9, crossfade=0.1): """Generate audio from text""" data = register.get_audio(key) if(data["isOnline"] == "True"): audio = download_audio(data["audio_path"], f'{key}.wav') txt = data["transcription"].decode('utf-8') print(txt) audio, spectogram = voice.infer(audio, txt, text, remove_silence=True) else: audio, spectogram = voice.infer(data["audio_path"], data["transcription"], text, remove_silence=True, speed=speed, crossfade=crossfade) if(censor): audio = censorModel.process_audio(audio, offset) return audio