from __future__ import annotations import datetime import json import time import uuid from collections import OrderedDict from datetime import datetime, timezone from pathlib import Path from typing import Any import gradio import gradio as gr import huggingface_hub from gradio import FlaggingCallback from gradio_client import utils as client_utils class HuggingFaceDatasetSaver(gradio.HuggingFaceDatasetSaver): def flag( self, flag_data: list[Any], flag_option: str = "", username: str | None = None, ) -> int: if self.separate_dirs: # JSONL files to support dataset preview on the Hub current_utc_time = datetime.now(timezone.utc) iso_format_without_microseconds = current_utc_time.strftime( "%Y-%m-%dT%H:%M:%S" ) milliseconds = int(current_utc_time.microsecond / 1000) unique_id = f"{iso_format_without_microseconds}.{milliseconds:03}Z" if username not in (None, ""): unique_id += f"_U_{username}" else: unique_id += f"_{str(uuid.uuid4())[:8]}" components_dir = self.dataset_dir / unique_id data_file = components_dir / "metadata.jsonl" path_in_repo = unique_id # upload in sub folder (safer for concurrency) else: # Unique CSV file components_dir = self.dataset_dir data_file = components_dir / "data.csv" path_in_repo = None # upload at root level return self._flag_in_dir( data_file=data_file, components_dir=components_dir, path_in_repo=path_in_repo, flag_data=flag_data, flag_option=flag_option, username=username or "", ) def _deserialize_components( self, data_dir: Path, flag_data: list[Any], flag_option: str = "", username: str = "", ) -> tuple[dict[Any, Any], list[Any]]: """Deserialize components and return the corresponding row for the flagged sample. Images/audio are saved to disk as individual files. """ # Components that can have a preview on dataset repos file_preview_types = {gr.Audio: "Audio", gr.Image: "Image"} # Generate the row corresponding to the flagged sample features = OrderedDict() row = [] for component, sample in zip(self.components, flag_data): # Get deserialized object (will save sample to disk if applicable -file, audio, image,...-) label = component.label or "" save_dir = data_dir / client_utils.strip_invalid_filename_characters(label) save_dir.mkdir(exist_ok=True, parents=True) deserialized = component.flag(sample, save_dir) # Base component .flag method returns JSON; extract path from it when it is FileData if component.data_model: data = component.data_model.from_json(json.loads(deserialized)) if component.data_model == gr.data_classes.FileData: deserialized = data.path # Add deserialized object to row features[label] = {"dtype": "string", "_type": "Value"} try: deserialized_path = Path(deserialized) if not deserialized_path.exists(): raise FileNotFoundError(f"File {deserialized} not found") row.append(str(deserialized_path.relative_to(self.dataset_dir))) except (FileNotFoundError, TypeError, ValueError): deserialized = "" if deserialized is None else str(deserialized) row.append(deserialized) # If component is eligible for a preview, add the URL of the file # Be mindful that images and audio can be None if isinstance(component, tuple(file_preview_types)): # type: ignore for _component, _type in file_preview_types.items(): if isinstance(component, _component): features[label + " file"] = {"_type": _type} break if deserialized: path_in_repo = str( # returned filepath is absolute, we want it relative to compute URL Path(deserialized).relative_to(self.dataset_dir) ).replace( "\\", "/" ) row.append( huggingface_hub.hf_hub_url( repo_id=self.dataset_id, filename=path_in_repo, repo_type="dataset", ) ) else: row.append("") features["flag"] = {"dtype": "string", "_type": "Value"} features["username"] = {"dtype": "string", "_type": "Value"} row.append(flag_option) row.append(username) return features, row class FlagMethod: """ Helper class that contains the flagging options and calls the flagging method. Also provides visual feedback to the user when flag is clicked. """ def __init__( self, flagging_callback: FlaggingCallback, label: str, value: str, visual_feedback: bool = True, ): self.flagging_callback = flagging_callback self.label = label self.value = value self.__name__ = "Flag" self.visual_feedback = visual_feedback def __call__( self, request: gr.Request, profile: gr.OAuthProfile | None, *flag_data, ): username = None if profile is not None: username = profile.username try: self.flagging_callback.flag( list(flag_data), flag_option=self.value, username=username ) except Exception as e: print(f"Error while sharing: {e}") if self.visual_feedback: return gr.Button(value="Sharing error", interactive=False) if not self.visual_feedback: return time.sleep(0.8) # to provide enough time for the user to observe button change return gr.Button(value="Sharing complete", interactive=False)