import numpy as np import pandas as pd from deepface import DeepFace import streamlit as st import cv2 import base64 import time st.set_page_config(layout="wide") cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') def upload(): image=None initial_image = st.camera_input('Take a picture') original_image = initial_image temp_path = None if initial_image is not None: bytes_data = initial_image.getvalue() image = cv2.imdecode(np.frombuffer(bytes_data, np.uint8), cv2.IMREAD_COLOR) return image, original_image def main(options): if st.checkbox('Take a picture for prediction'): image, original_image= upload() if original_image is not None and original_image is not None and st.button('Prediction'): # Check if original_image is not None st.warning('Wait for few seconds!!') progress_bar = st.progress(0.0) status_text = st.empty() result = DeepFace.analyze(image,detector_backend=options,actions=['age','gender','emotion','race']) for i in range(100): progress_bar.progress((i + 1) / 100) status_text.text(f"Processing {i+1}%") time.sleep(0.01) progress_bar.empty() gray_frame = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) faces = cascade.detectMultiScale(gray_frame, 1.1, 3) faces = sorted(faces, key=lambda f: -f[2] * f[3]) if len(faces) > 0: x,y,w,h=faces[0] cv2.rectangle(image, (x, y), (x+w, y+h), (4, 29, 255), 2, cv2.LINE_4) user_selected_items = list(result[0].keys()) if 'age' in user_selected_items: age_label='Age: '+str(result[0]['age']) cv2.putText(image, age_label, (x ,y+h+30), cv2.FONT_ITALIC,1 ,(255,255,0), 2) if 'dominant_gender' in user_selected_items: gender_label='Gender: '+str(result[0]['dominant_gender']) cv2.putText(image, gender_label, (x, y+h+70), cv2.FONT_ITALIC,1, (0,255,255), 2) if 'dominant_emotion' in user_selected_items: emotion_label='Emotion: '+str(result[0]['dominant_emotion']).title() cv2.putText(image, emotion_label, (x, y+h+110), cv2.FONT_ITALIC,1 ,(255,0,255), 2) if 'dominant_race' in user_selected_items: emotion_label='Race: '+str(result[0]['dominant_race']).title() cv2.putText(image, emotion_label, (x, y+h+150), cv2.FONT_ITALIC,1 ,(255,255,255), 2) st.image(image, channels='BGR') st.balloons() if __name__ == '__main__': def get_options(): actions = ['opencv','mtcnn','retinaface'] option2 = st.selectbox('Choose the following backend:', actions) return option2 main(get_options())