"Задание 3" import gradio as gr import numpy as np import torch from transformers import pipeline, MarianMTModel, MarianTokenizer, VitsModel, VitsTokenizer device = "cuda:0" if torch.cuda.is_available() else "cpu" import phonemizer # variants: 'voidful/wav2vec2-xlsr-multilingual-56'; facebook/wav2vec2-lv-60-espeak-cv-ft, но здесь не загружается библиотека py-espeak-ng model_wav2vec = 'openai/whisper-small' asr_pipe = pipeline("automatic-speech-recognition", model=model_wav2vec, device=device) # load speech-to-text checkpoint def translate_audio(audio): outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"}) return outputs["text"] # translation into Russian def translate_text(text): # to English - mul en, to Russian - en ru model_mul_en = pipeline("translation", model = "Helsinki-NLP/opus-mt-mul-en") model_en_ru = pipeline("translation", model = "Helsinki-NLP/opus-mt-en-ru") translated_text = model_en_ru(model_mul_en(text)[0]['translation_text']) return translated_text[0]['translation_text'] # load text-to-speech checkpoint model = VitsModel.from_pretrained("facebook/mms-tts-rus") tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-rus") def synthesise(text): translated_text = translate_text(text) inputs = tokenizer(translated_text, return_tensors="pt") input_ids = inputs["input_ids"] with torch.no_grad(): outputs = model(input_ids) speech = outputs["waveform"] return speech.cpu() def speech_to_speech_translation(audio): text_from_audio = translate_audio(audio) synthesised_speech = synthesise(text_from_audio) synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) return 16000, synthesised_speech[0] title = "Cascaded STST. Russian language version" description = """ * В начале происходит распознавание речи с помощью модели `openai/whisper-small`. * Затем полученный текст переводится сначала на английский с помощью `Helsinki-NLP/opus-mt-mul-en`, а потом на русский с помощью `Helsinki-NLP/opus-mt-en-ru`. * На последнем шаге полученный текст озвучивается с помощью модели `facebook/mms-tts-rus model`. Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Russian. Demo uses `openai/whisper-small` for speech-to-text and `facebook/mms-tts-rus model` for text-to-speech: ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") """ demo = gr.Blocks() mic_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="microphone", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), title=title, description=description, ) file_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="upload", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), examples=[["./example.wav"]], title=title, description=description, ) with demo: gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) demo.launch()