import timm import gradio as gr from fastai.vision.all import * learn = load_learner('cat.pkl') labels = learn.dls.vocab def classify_image(img): img = PILImage.create(img) pred, pred_idx, probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} images = gr.inputs.Image(shape=(300, 300)) outputs = gr.outputs.Label(num_top_classes=3) examples = ['british-shorthair.jpg', 'maine-coon.jpg', 'european-shorthair.jpg'] interface = gr.Interface(fn=classify_image, inputs=images, outputs=outputs, examples=examples) interface.launch(inline=False)