import io import math from typing import Optional import numpy as np import spaces import gradio as gr import torch from parler_tts import ParlerTTSForConditionalGeneration from pydub import AudioSegment from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed from huggingface_hub import InferenceClient import nltk import random nltk.download('punkt') device = "cuda:0" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" torch_dtype = torch.float16 if device != "cpu" else torch.float32 repo_id = "parler-tts/parler_tts_mini_v0.1" jenny_repo_id = "ylacombe/parler-tts-mini-jenny-30H" model = ParlerTTSForConditionalGeneration.from_pretrained( jenny_repo_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True ).to(device) client = InferenceClient() description_tokenizer = AutoTokenizer.from_pretrained(repo_id) prompt_tokenizer = AutoTokenizer.from_pretrained(repo_id) feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id) SAMPLE_RATE = feature_extractor.sampling_rate SEED = 42 def numpy_to_mp3(audio_array, sampling_rate): # Normalize audio_array if it's floating-point if np.issubdtype(audio_array.dtype, np.floating): max_val = np.max(np.abs(audio_array)) + 1 audio_array = (audio_array / max_val) * 32767 # Normalize to 16-bit range audio_array = audio_array.astype(np.int16) # Create an audio segment from the numpy array audio_segment = AudioSegment( audio_array.tobytes(), frame_rate=sampling_rate, sample_width=audio_array.dtype.itemsize, channels=1 ) # Export the audio segment to MP3 bytes - use a high bitrate to maximise quality mp3_io = io.BytesIO() audio_segment.export(mp3_io, format="mp3", bitrate="320k") # Get the MP3 bytes mp3_bytes = mp3_io.getvalue() mp3_io.close() return mp3_bytes sampling_rate = model.audio_encoder.config.sampling_rate frame_rate = model.audio_encoder.config.frame_rate def generate_story(subject: str, setting: str) -> str: messages = [{"role": "sytem", "content": ("You are an award-winning children's bedtime story author lauded for your inventive stories." "You want to write a bed time story for your child. They will give you the subject and setting " "and you will write the entire story. It should be targetted at children 5 and younger and take about " "a minute to read")}, {"role": "user", "content": f"Please tell me a story about a {subject} in {setting}"}] response = client.chat_completion(messages, max_tokens=1024, seed=random.randint(1, 5000)) gr.Info("Story Generated", duration=3) story = response.choices[0].message.content return None, None, story @spaces.GPU def generate_base(story): model_input = story.replace("\n", " ").strip() model_input_tokens = nltk.sent_tokenize(model_input) play_steps_in_s = 4.0 play_steps = int(frame_rate * play_steps_in_s) gr.Info("Generating Audio", duration=3) description = "Jenny speaks at an average pace with a calm delivery in a very confined sounding environment with clear audio quality." story_tokens = prompt_tokenizer(model_input_tokens, return_tensors="pt", padding=True).to(device) description_tokens = description_tokenizer([description for _ in range(len(model_input_tokens))], return_tensors="pt").to(device) speech_output = model.generate(input_ids=description_tokens.input_ids, prompt_input_ids=story_tokens.input_ids, attention_mask=description_tokens.attention_mask, prompt_attention_mask=story_tokens.attention_mask) speech_output = [output.cpu().numpy() for output in speech_output] return None, None, speech_output def stream_audio(hidden_story, speech_output): gr.Info("Reading Story") for new_audio in speech_output: print(f"Sample of length: {round(new_audio.shape[0] / sampling_rate, 2)} seconds") yield hidden_story, numpy_to_mp3(new_audio, sampling_rate=sampling_rate) with gr.Blocks() as block: gr.HTML( f"""

Bedtime Story Reader 😴🔊

Powered by Parler-TTS """ ) with gr.Group(): with gr.Row(): subject = gr.Dropdown(value="Princess", choices=["Prince", "Princess", "Dog", "Cat"], label="Subject") setting = gr.Dropdown(value="Forest", choices=["Forest", "Kingdom", "Jungle", "Underwater", "Pirate Ship"], label="Setting") with gr.Row(): run_button = gr.Button("Generate Story", variant="primary") with gr.Row(): with gr.Group(): audio_out = gr.Audio(label="Bed time story", streaming=True, autoplay=True) story = gr.Textbox(label="Story") inputs = [subject, setting] outputs = [story, audio_out] state = gr.State() hidden_story = gr.State() run_button.click(generate_story, inputs=inputs, outputs=[story, audio_out, hidden_story]).success(fn=generate_base, inputs=hidden_story, outputs=[story, audio_out, state]).success(stream_audio, inputs=[hidden_story, state], outputs=[story, audio_out]) block.queue() block.launch(share=True)