import gradio as gr from gradio import ChatMessage from transformers import load_tool, ReactCodeAgent, HfApiEngine # type: ignore from utils import stream_from_transformers_agent import os HF_TOKEN = os.environ.get("HF_TOKEN") # Import tool from Hub image_generation_tool = load_tool("m-ric/text-to-image") llm_engine = HfApiEngine(model="meta-llama/Meta-Llama-3-70B-Instruct", token=HF_TOKEN) # Initialize the agent with both tools agent = ReactCodeAgent(tools=[image_generation_tool], llm_engine=llm_engine) def interact_with_agent(prompt, messages): messages.append(ChatMessage(role="user", content=prompt)) yield messages for msg in stream_from_transformers_agent(agent, prompt): messages.append(msg) yield messages yield messages with gr.Blocks() as demo: stored_message = gr.State([]) chatbot = gr.Chatbot(label="Agent", type="messages", avatar_images=(None, "https://em-content.zobj.net/source/twitter/53/robot-face_1f916.png")) text_input = gr.Textbox(lines=1, label="Chat Message") text_input.submit(lambda s: (s, ""), [text_input], [stored_message, text_input]).then(interact_with_agent, [stored_message, chatbot], [chatbot]) if __name__ == "__main__": demo.launch()