import torchvision import math import random import functools import operator import torch from torch import nn from torch.nn import functional as F from torch.autograd import Function from op import FusedLeakyReLU, fused_leaky_relu, upfirdn2d n_latent = 11 channels = { 4: 512, 8: 512, 16: 512, 32: 512, 64: 256, 128: 128, 256: 64, 512: 32, 1024: 16, } class LambdaLR(): def __init__(self, n_epochs, offset, decay_start_epoch): assert ((n_epochs - decay_start_epoch) > 0), "Decay must start before the training session ends!" self.n_epochs = n_epochs self.offset = offset self.decay_start_epoch = decay_start_epoch def step(self, epoch): return 1.0 - max(0, epoch + self.offset - self.decay_start_epoch)/(self.n_epochs - self.decay_start_epoch) class PixelNorm(nn.Module): def __init__(self): super().__init__() def forward(self, input): return input * torch.rsqrt(torch.mean(input ** 2, dim=1, keepdim=True) + 1e-8) def make_kernel(k): k = torch.tensor(k, dtype=torch.float32) if k.ndim == 1: k = k[None, :] * k[:, None] k /= k.sum() return k class Upsample(nn.Module): def __init__(self, kernel, factor=2): super().__init__() self.factor = factor kernel = make_kernel(kernel) * (factor ** 2) self.register_buffer('kernel', kernel) p = kernel.shape[0] - factor pad0 = (p + 1) // 2 + factor - 1 pad1 = p // 2 self.pad = (pad0, pad1) def forward(self, input): out = upfirdn2d(input, self.kernel, up=self.factor, down=1, pad=self.pad) return out class Downsample(nn.Module): def __init__(self, kernel, factor=2): super().__init__() self.factor = factor kernel = make_kernel(kernel) self.register_buffer('kernel', kernel) p = kernel.shape[0] - factor pad0 = (p + 1) // 2 pad1 = p // 2 self.pad = (pad0, pad1) def forward(self, input): out = upfirdn2d(input, self.kernel, up=1, down=self.factor, pad=self.pad) return out class Blur(nn.Module): def __init__(self, kernel, pad, upsample_factor=1): super().__init__() kernel = make_kernel(kernel) if upsample_factor > 1: kernel = kernel * (upsample_factor ** 2) self.register_buffer('kernel', kernel) self.pad = pad def forward(self, input): out = upfirdn2d(input, self.kernel, pad=self.pad) return out class EqualConv2d(nn.Module): def __init__( self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True ): super().__init__() self.weight = nn.Parameter( torch.randn(out_channel, in_channel, kernel_size, kernel_size) ) self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2) self.stride = stride self.padding = padding if bias: self.bias = nn.Parameter(torch.zeros(out_channel)) else: self.bias = None def forward(self, input): out = F.conv2d( input, self.weight * self.scale, bias=self.bias, stride=self.stride, padding=self.padding, ) return out def __repr__(self): return ( f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},' f' {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})' ) class EqualLinear(nn.Module): def __init__( self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None ): super().__init__() self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul)) if bias: self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init)) else: self.bias = None self.activation = activation self.scale = (1 / math.sqrt(in_dim)) * lr_mul self.lr_mul = lr_mul def forward(self, input): bias = self.bias*self.lr_mul if self.bias is not None else None if self.activation: out = F.linear(input, self.weight * self.scale) out = fused_leaky_relu(out, bias) else: out = F.linear( input, self.weight * self.scale, bias=bias ) return out def __repr__(self): return ( f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})' ) class ScaledLeakyReLU(nn.Module): def __init__(self, negative_slope=0.2): super().__init__() self.negative_slope = negative_slope def forward(self, input): out = F.leaky_relu(input, negative_slope=self.negative_slope) return out * math.sqrt(2) class ModulatedConv2d(nn.Module): def __init__( self, in_channel, out_channel, kernel_size, style_dim, use_style=True, demodulate=True, upsample=False, downsample=False, blur_kernel=[1, 3, 3, 1], ): super().__init__() self.eps = 1e-8 self.kernel_size = kernel_size self.in_channel = in_channel self.out_channel = out_channel self.upsample = upsample self.downsample = downsample self.use_style = use_style if upsample: factor = 2 p = (len(blur_kernel) - factor) - (kernel_size - 1) pad0 = (p + 1) // 2 + factor - 1 pad1 = p // 2 + 1 self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor=factor) if downsample: factor = 2 p = (len(blur_kernel) - factor) + (kernel_size - 1) pad0 = (p + 1) // 2 pad1 = p // 2 self.blur = Blur(blur_kernel, pad=(pad0, pad1)) fan_in = in_channel * kernel_size ** 2 self.scale = 1 / math.sqrt(fan_in) self.padding = kernel_size // 2 self.weight = nn.Parameter( torch.randn(1, out_channel, in_channel, kernel_size, kernel_size) ) if use_style: self.modulation = EqualLinear(style_dim, in_channel, bias_init=1) else: self.modulation = nn.Parameter(torch.Tensor(1, 1, in_channel, 1, 1).fill_(1)) self.demodulate = demodulate def __repr__(self): return ( f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, ' f'upsample={self.upsample}, downsample={self.downsample})' ) def forward(self, input, style): batch, in_channel, height, width = input.shape if self.use_style: style = self.modulation(style).view(batch, 1, in_channel, 1, 1) weight = self.scale * self.weight * style else: weight = self.scale * self.weight.expand(batch,-1,-1,-1,-1) * self.modulation if self.demodulate: demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-8) weight = weight * demod.view(batch, self.out_channel, 1, 1, 1) weight = weight.view( batch * self.out_channel, in_channel, self.kernel_size, self.kernel_size ) if self.upsample: input = input.view(1, batch * in_channel, height, width) weight = weight.view( batch, self.out_channel, in_channel, self.kernel_size, self.kernel_size ) weight = weight.transpose(1, 2).reshape( batch * in_channel, self.out_channel, self.kernel_size, self.kernel_size ) out = F.conv_transpose2d(input, weight, padding=0, stride=2, groups=batch) _, _, height, width = out.shape out = out.view(batch, self.out_channel, height, width) out = self.blur(out) elif self.downsample: input = self.blur(input) _, _, height, width = input.shape input = input.view(1, batch * in_channel, height, width) out = F.conv2d(input, weight, padding=0, stride=2, groups=batch) _, _, height, width = out.shape out = out.view(batch, self.out_channel, height, width) else: input = input.view(1, batch * in_channel, height, width) out = F.conv2d(input, weight, padding=self.padding, groups=batch) _, _, height, width = out.shape out = out.view(batch, self.out_channel, height, width) return out class NoiseInjection(nn.Module): def __init__(self): super().__init__() self.weight = nn.Parameter(torch.zeros(1)) def forward(self, image, noise=None): if noise is None: batch, _, height, width = image.shape noise = image.new_empty(batch, 1, height, width).normal_() return image + self.weight * noise class ConstantInput(nn.Module): def __init__(self, style_dim): super().__init__() self.input = nn.Parameter(torch.randn(1, style_dim)) def forward(self, input): batch = input.shape[0] out = self.input.repeat(batch, n_latent) return out class StyledConv(nn.Module): def __init__( self, in_channel, out_channel, kernel_size, style_dim, use_style=True, upsample=False, downsample=False, blur_kernel=[1, 3, 3, 1], demodulate=True, ): super().__init__() self.use_style = use_style self.conv = ModulatedConv2d( in_channel, out_channel, kernel_size, style_dim, use_style=use_style, upsample=upsample, downsample=downsample, blur_kernel=blur_kernel, demodulate=demodulate, ) #if use_style: # self.noise = NoiseInjection() #else: # self.noise = None # self.bias = nn.Parameter(torch.zeros(1, out_channel, 1, 1)) # self.activate = ScaledLeakyReLU(0.2) self.activate = FusedLeakyReLU(out_channel) def forward(self, input, style=None, noise=None): out = self.conv(input, style) #if self.use_style: # out = self.noise(out, noise=noise) # out = out + self.bias out = self.activate(out) return out class StyledResBlock(nn.Module): def __init__(self, in_channel, style_dim, blur_kernel=[1, 3, 3, 1], demodulate=True): super().__init__() self.conv1 = StyledConv(in_channel, in_channel, 3, style_dim, upsample=False, blur_kernel=blur_kernel, demodulate=demodulate) self.conv2 = StyledConv(in_channel, in_channel, 3, style_dim, upsample=False, blur_kernel=blur_kernel, demodulate=demodulate) def forward(self, input, style): out = self.conv1(input, style) out = self.conv2(out, style) out = (out + input) / math.sqrt(2) return out class ToRGB(nn.Module): def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1, 3, 3, 1]): super().__init__() if upsample: self.upsample = Upsample(blur_kernel) self.conv = ModulatedConv2d(in_channel, 3, 1, style_dim, demodulate=False) self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1)) def forward(self, input, style, skip=None): out = self.conv(input, style) out = out + self.bias if skip is not None: skip = self.upsample(skip) out = out + skip return out class Generator(nn.Module): def __init__( self, size, num_down, latent_dim, n_mlp, n_res, channel_multiplier=1, blur_kernel=[1, 3, 3, 1], lr_mlp=0.01, ): super().__init__() self.size = size style_dim = 512 mapping = [EqualLinear(latent_dim, style_dim, lr_mul=lr_mlp, activation='fused_lrelu')] for i in range(n_mlp-1): mapping.append(EqualLinear(style_dim, style_dim, lr_mul=lr_mlp, activation='fused_lrelu')) self.mapping = nn.Sequential(*mapping) self.encoder = Encoder(size, latent_dim, num_down, n_res, channel_multiplier) self.log_size = int(math.log(size, 2)) #7 in_log_size = self.log_size - num_down #7-2 or 7-3 in_size = 2 ** in_log_size in_channel = channels[in_size] self.adain_bottleneck = nn.ModuleList() for i in range(n_res): self.adain_bottleneck.append(StyledResBlock(in_channel, style_dim)) self.conv1 = StyledConv(in_channel, in_channel, 3, style_dim, blur_kernel=blur_kernel) self.to_rgb1 = ToRGB(in_channel, style_dim, upsample=False) self.num_layers = (self.log_size - in_log_size) * 2 + 1 #7 self.convs = nn.ModuleList() self.upsamples = nn.ModuleList() self.to_rgbs = nn.ModuleList() #self.noises = nn.Module() #for layer_idx in range(self.num_layers): # res = (layer_idx + (in_log_size*2+1)) // 2 #2,3,3,5 ... -> 4,5,5,6 ... # shape = [1, 1, 2 ** res, 2 ** res] # self.noises.register_buffer(f'noise_{layer_idx}', torch.randn(*shape)) for i in range(in_log_size+1, self.log_size + 1): out_channel = channels[2 ** i] self.convs.append( StyledConv( in_channel, out_channel, 3, style_dim, upsample=True, blur_kernel=blur_kernel, ) ) self.convs.append( StyledConv( out_channel, out_channel, 3, style_dim, blur_kernel=blur_kernel ) ) self.to_rgbs.append(ToRGB(out_channel, style_dim)) in_channel = out_channel def style_encode(self, input): return self.encoder(input)[1] def encode(self, input): return self.encoder(input) def forward(self, input, z=None): content, style = self.encode(input) if z is None: out = self.decode(content, style) else: out = self.decode(content, z) return out, content, style def decode(self, input, styles, use_mapping=True): if use_mapping: styles = self.mapping(styles) #styles = styles.repeat(1, n_latent).view(styles.size(0), n_latent, -1) out = input i = 0 for conv in self.adain_bottleneck: out = conv(out, styles) i += 1 out = self.conv1(out, styles, noise=None) skip = self.to_rgb1(out, styles) i += 2 for conv1, conv2, to_rgb in zip( self.convs[::2], self.convs[1::2], self.to_rgbs ): out = conv1(out, styles, noise=None) out = conv2(out, styles, noise=None) skip = to_rgb(out, styles, skip) i += 3 image = skip return image class ConvLayer(nn.Sequential): def __init__( self, in_channel, out_channel, kernel_size, downsample=False, blur_kernel=[1, 3, 3, 1], bias=True, activate=True, ): layers = [] if downsample: factor = 2 p = (len(blur_kernel) - factor) + (kernel_size - 1) pad0 = (p + 1) // 2 pad1 = p // 2 layers.append(Blur(blur_kernel, pad=(pad0, pad1))) stride = 2 self.padding = 0 else: stride = 1 self.padding = kernel_size // 2 layers.append( EqualConv2d( in_channel, out_channel, kernel_size, padding=self.padding, stride=stride, bias=bias and not activate, ) ) if activate: if bias: layers.append(FusedLeakyReLU(out_channel)) else: layers.append(ScaledLeakyReLU(0.2)) super().__init__(*layers) class InResBlock(nn.Module): def __init__(self, in_channel, blur_kernel=[1, 3, 3, 1]): super().__init__() self.conv1 = StyledConv(in_channel, in_channel, 3, None, blur_kernel=blur_kernel, demodulate=True, use_style=False) self.conv2 = StyledConv(in_channel, in_channel, 3, None, blur_kernel=blur_kernel, demodulate=True, use_style=False) def forward(self, input): out = self.conv1(input, None) out = self.conv2(out, None) out = (out + input) / math.sqrt(2) return out class ResBlock(nn.Module): def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1], downsample=True): super().__init__() self.conv1 = ConvLayer(in_channel, in_channel, 3) self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=downsample) if downsample or in_channel != out_channel: self.skip = ConvLayer( in_channel, out_channel, 1, downsample=downsample, activate=False, bias=False ) else: self.skip = None def forward(self, input): out = self.conv1(input) out = self.conv2(out) if self.skip is None: skip = input else: skip = self.skip(input) out = (out + skip) / math.sqrt(2) return out class Discriminator(nn.Module): def __init__(self, size, channel_multiplier=2, blur_kernel=[1, 3, 3, 1]): super().__init__() self.size = size l_branch = self.make_net_(32) l_branch += [ConvLayer(channels[32], 1, 1, activate=False)] self.l_branch = nn.Sequential(*l_branch) g_branch = self.make_net_(8) self.g_branch = nn.Sequential(*g_branch) self.g_adv = ConvLayer(channels[8], 1, 1, activate=False) self.g_std = nn.Sequential(ConvLayer(channels[8], channels[4], 3, downsample=True), nn.Flatten(), EqualLinear(channels[4] * 4 * 4, 128, activation='fused_lrelu'), ) self.g_final = EqualLinear(128, 1, activation=False) def make_net_(self, out_size): size = self.size convs = [ConvLayer(3, channels[size], 1)] log_size = int(math.log(size, 2)) out_log_size = int(math.log(out_size, 2)) in_channel = channels[size] for i in range(log_size, out_log_size, -1): out_channel = channels[2 ** (i - 1)] convs.append(ResBlock(in_channel, out_channel)) in_channel = out_channel return convs def forward(self, x): l_adv = self.l_branch(x) g_act = self.g_branch(x) g_adv = self.g_adv(g_act) output = self.g_std(g_act) g_stddev = torch.sqrt(output.var(0, keepdim=True, unbiased=False) + 1e-8).repeat(x.size(0),1) g_std = self.g_final(g_stddev) return [l_adv, g_adv, g_std] class Encoder(nn.Module): def __init__(self, size, latent_dim, num_down, n_res, channel_multiplier=2, blur_kernel=[1, 3, 3, 1]): super().__init__() stem = [ConvLayer(3, channels[size], 1)] log_size = int(math.log(size, 2)) in_channel = channels[size] for i in range(log_size, log_size-num_down, -1): out_channel = channels[2 ** (i - 1)] stem.append(ResBlock(in_channel, out_channel, downsample=True)) in_channel = out_channel stem += [ResBlock(in_channel, in_channel, downsample=False) for i in range(n_res)] self.stem = nn.Sequential(*stem) self.content = nn.Sequential( ConvLayer(in_channel, in_channel, 1), ConvLayer(in_channel, in_channel, 1) ) style = [] for i in range(log_size-num_down, 2, -1): out_channel = channels[2 ** (i - 1)] style.append(ConvLayer(in_channel, out_channel, 3, downsample=True)) in_channel = out_channel style += [ nn.Flatten(), EqualLinear(channels[4] * 4 * 4, channels[4], activation='fused_lrelu'), EqualLinear(channels[4], latent_dim), ] self.style = nn.Sequential(*style) def forward(self, input): act = self.stem(input) content = self.content(act) style = self.style(act) return content, style class StyleEncoder(nn.Module): def __init__(self, size, style_dim, channel_multiplier=2, blur_kernel=[1, 3, 3, 1]): super().__init__() convs = [ConvLayer(3, channels[size], 1)] log_size = int(math.log(size, 2)) in_channel = channels[size] num_down = 6 for i in range(log_size, log_size-num_down, -1): w = 2 ** (i - 1) out_channel = channels[w] convs.append(ConvLayer(in_channel, out_channel, 3, downsample=True)) in_channel = out_channel convs += [ nn.Flatten(), EqualLinear(channels[4] * 4 * 4, channels[4], activation='fused_lrelu'), EqualLinear(channels[4], style_dim), ] self.convs = nn.Sequential(*convs) def forward(self, input): style = self.convs(input) return style.view(input.size(0), -1) class LatDiscriminator(nn.Module): def __init__(self, style_dim): super().__init__() fc = [EqualLinear(style_dim, 256, activation='fused_lrelu')] for i in range(3): fc += [EqualLinear(256, 256, activation='fused_lrelu')] fc += [FCMinibatchStd(256, 256)] fc += [EqualLinear(256, 1)] self.fc = nn.Sequential(*fc) def forward(self, input): return [self.fc(input), ] class FCMinibatchStd(nn.Module): def __init__(self, in_channel, out_channel): super().__init__() self.fc = EqualLinear(in_channel+1, out_channel, activation='fused_lrelu') def forward(self, out): stddev = torch.sqrt(out.var(0, unbiased=False) + 1e-8).mean().view(1,1).repeat(out.size(0), 1) out = torch.cat([out, stddev], 1) out = self.fc(out) return out