|
import gradio as gr |
|
import pandas as pd |
|
from pathlib import Path |
|
|
|
abs_path = Path(__file__).parent.absolute() |
|
|
|
df = pd.read_json(str(abs_path / "assets/leaderboard_data.json")) |
|
invisible_df = df.copy() |
|
|
|
COLS = [ |
|
"T", |
|
"Model", |
|
"Average ⬆️", |
|
"ARC", |
|
"HellaSwag", |
|
"MMLU", |
|
"TruthfulQA", |
|
"Winogrande", |
|
"GSM8K", |
|
"Type", |
|
"Architecture", |
|
"Precision", |
|
"Merged", |
|
"Hub License", |
|
"#Params (B)", |
|
"Hub ❤️", |
|
"Model sha", |
|
"model_name_for_query", |
|
] |
|
ON_LOAD_COLS = [ |
|
"T", |
|
"Model", |
|
"Average ⬆️", |
|
"ARC", |
|
"HellaSwag", |
|
"MMLU", |
|
"TruthfulQA", |
|
"Winogrande", |
|
"GSM8K", |
|
"model_name_for_query", |
|
] |
|
TYPES = [ |
|
"str", |
|
"markdown", |
|
"number", |
|
"number", |
|
"number", |
|
"number", |
|
"number", |
|
"number", |
|
"number", |
|
"str", |
|
"str", |
|
"str", |
|
"str", |
|
"bool", |
|
"str", |
|
"number", |
|
"number", |
|
"bool", |
|
"str", |
|
"bool", |
|
"bool", |
|
"str", |
|
] |
|
NUMERIC_INTERVALS = { |
|
"?": pd.Interval(-1, 0, closed="right"), |
|
"~1.5": pd.Interval(0, 2, closed="right"), |
|
"~3": pd.Interval(2, 4, closed="right"), |
|
"~7": pd.Interval(4, 9, closed="right"), |
|
"~13": pd.Interval(9, 20, closed="right"), |
|
"~35": pd.Interval(20, 45, closed="right"), |
|
"~60": pd.Interval(45, 70, closed="right"), |
|
"70+": pd.Interval(70, 10000, closed="right"), |
|
} |
|
MODEL_TYPE = [str(s) for s in df["T"].unique()] |
|
Precision = [str(s) for s in df["Precision"].unique()] |
|
|
|
|
|
def update_table( |
|
hidden_df: pd.DataFrame, |
|
columns: list, |
|
type_query: list, |
|
precision_query: str, |
|
size_query: list, |
|
query: str, |
|
): |
|
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query) |
|
filtered_df = filter_queries(query, filtered_df) |
|
df = select_columns(filtered_df, columns) |
|
return df |
|
|
|
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: |
|
return df[(df["model_name_for_query"].str.contains(query, case=False))] |
|
|
|
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame: |
|
|
|
filtered_df = df[[c for c in COLS if c in df.columns and c in columns]] |
|
return filtered_df |
|
|
|
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame: |
|
final_df = [] |
|
if query != "": |
|
queries = [q.strip() for q in query.split(";")] |
|
for _q in queries: |
|
_q = _q.strip() |
|
if _q != "": |
|
temp_filtered_df = search_table(filtered_df, _q) |
|
if len(temp_filtered_df) > 0: |
|
final_df.append(temp_filtered_df) |
|
if len(final_df) > 0: |
|
filtered_df = pd.concat(final_df) |
|
filtered_df = filtered_df.drop_duplicates( |
|
subset=["Model", "Precision", "Model sha"] |
|
) |
|
|
|
return filtered_df |
|
|
|
def filter_models( |
|
df: pd.DataFrame, |
|
type_query: list, |
|
size_query: list, |
|
precision_query: list, |
|
) -> pd.DataFrame: |
|
|
|
filtered_df = df |
|
|
|
type_emoji = [t[0] for t in type_query] |
|
filtered_df = filtered_df.loc[df["T"].isin(type_emoji)] |
|
filtered_df = filtered_df.loc[df["Precision"].isin(precision_query + ["None"])] |
|
|
|
numeric_interval = pd.IntervalIndex( |
|
sorted([NUMERIC_INTERVALS[s] for s in size_query]) |
|
) |
|
params_column = pd.to_numeric(df["#Params (B)"], errors="coerce") |
|
mask = params_column.apply(lambda x: any(numeric_interval.contains(x))) |
|
filtered_df = filtered_df.loc[mask] |
|
|
|
return filtered_df |
|
|
|
demo = gr.Blocks(css=str(abs_path / "assets/leaderboard_data.json")) |
|
with demo: |
|
gr.Markdown("""Test Space of the LLM Leaderboard""", elem_classes="markdown-text") |
|
|
|
with gr.Tabs(elem_classes="tab-buttons") as tabs: |
|
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): |
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
search_bar = gr.Textbox( |
|
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...", |
|
show_label=False, |
|
elem_id="search-bar", |
|
) |
|
with gr.Row(): |
|
shown_columns = gr.CheckboxGroup( |
|
choices=COLS, |
|
value=ON_LOAD_COLS, |
|
label="Select columns to show", |
|
elem_id="column-select", |
|
interactive=True, |
|
) |
|
with gr.Column(min_width=320): |
|
filter_columns_type = gr.CheckboxGroup( |
|
label="Model types", |
|
choices=MODEL_TYPE, |
|
value=MODEL_TYPE, |
|
interactive=True, |
|
elem_id="filter-columns-type", |
|
) |
|
filter_columns_precision = gr.CheckboxGroup( |
|
label="Precision", |
|
choices=Precision, |
|
value=Precision, |
|
interactive=True, |
|
elem_id="filter-columns-precision", |
|
) |
|
filter_columns_size = gr.CheckboxGroup( |
|
label="Model sizes (in billions of parameters)", |
|
choices=list(NUMERIC_INTERVALS.keys()), |
|
value=list(NUMERIC_INTERVALS.keys()), |
|
interactive=True, |
|
elem_id="filter-columns-size", |
|
) |
|
|
|
leaderboard_table = gr.components.Dataframe( |
|
value=df[ON_LOAD_COLS], |
|
headers=ON_LOAD_COLS, |
|
datatype=TYPES, |
|
elem_id="leaderboard-table", |
|
interactive=False, |
|
visible=True, |
|
column_widths=["2%", "33%"], |
|
) |
|
|
|
|
|
hidden_leaderboard_table_for_search = gr.components.Dataframe( |
|
value=invisible_df[COLS], |
|
headers=COLS, |
|
datatype=TYPES, |
|
visible=False, |
|
) |
|
search_bar.submit( |
|
update_table, |
|
[ |
|
hidden_leaderboard_table_for_search, |
|
shown_columns, |
|
filter_columns_type, |
|
filter_columns_precision, |
|
filter_columns_size, |
|
search_bar, |
|
], |
|
leaderboard_table, |
|
) |
|
for selector in [ |
|
shown_columns, |
|
filter_columns_type, |
|
filter_columns_precision, |
|
filter_columns_size, |
|
]: |
|
selector.change( |
|
update_table, |
|
[ |
|
hidden_leaderboard_table_for_search, |
|
shown_columns, |
|
filter_columns_type, |
|
filter_columns_precision, |
|
filter_columns_size, |
|
search_bar, |
|
], |
|
leaderboard_table, |
|
queue=True, |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(default_concurrency_limit=40).launch() |
|
|